SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
- PMID: 38395871
- PMCID: PMC10885556
- DOI: 10.1186/s13059-024-03180-3
SHARE-Topic: Bayesian interpretable modeling of single-cell multi-omic data
Abstract
Multi-omic single-cell technologies, which simultaneously measure the transcriptional and epigenomic state of the same cell, enable understanding epigenetic mechanisms of gene regulation. However, noisy and sparse data pose fundamental statistical challenges to extract biological knowledge from complex datasets. SHARE-Topic, a Bayesian generative model of multi-omic single cell data using topic models, aims to address these challenges. SHARE-Topic identifies common patterns of co-variation between different omic layers, providing interpretable explanations for the data complexity. Tested on data from different technological platforms, SHARE-Topic provides low dimensional representations recapitulating known biology and defines associations between genes and distal regulators in individual cells.
Keywords: Bayesian modeling; Gene regulation; Gene regulator in cancer; Interpretability; Lymphoma; Single-cell multi-omics.
© 2024. The Author(s).
Conflict of interest statement
The authors declare that they have no competing interests.
Figures





Similar articles
-
Bayesian integrative analysis of epigenomic and transcriptomic data identifies Alzheimer's disease candidate genes and networks.PLoS Comput Biol. 2020 Apr 7;16(4):e1007771. doi: 10.1371/journal.pcbi.1007771. eCollection 2020 Apr. PLoS Comput Biol. 2020. PMID: 32255787 Free PMC article.
-
Integrative analysis of multi-omics and imaging data with incorporation of biological information via structural Bayesian factor analysis.Brief Bioinform. 2023 Mar 19;24(2):bbad073. doi: 10.1093/bib/bbad073. Brief Bioinform. 2023. PMID: 36882008 Free PMC article.
-
A novel approach to modeling multifactorial diseases using Ensemble Bayesian Rule classifiers.J Biomed Inform. 2020 Jul;107:103455. doi: 10.1016/j.jbi.2020.103455. Epub 2020 Jun 1. J Biomed Inform. 2020. PMID: 32497685
-
A primer on correlation-based dimension reduction methods for multi-omics analysis.J R Soc Interface. 2023 Oct;20(207):20230344. doi: 10.1098/rsif.2023.0344. Epub 2023 Oct 11. J R Soc Interface. 2023. PMID: 37817584 Free PMC article. Review.
-
Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data.NPJ Syst Biol Appl. 2023 Oct 19;9(1):51. doi: 10.1038/s41540-023-00312-6. NPJ Syst Biol Appl. 2023. PMID: 37857632 Free PMC article. Review.
Cited by
-
A scalable approach to topic modelling in single-cell data by approximate pseudobulk projection.Life Sci Alliance. 2024 Aug 6;7(10):e202402713. doi: 10.26508/lsa.202402713. Print 2024 Oct. Life Sci Alliance. 2024. PMID: 39107066 Free PMC article.
-
Gene regulatory network inference with popInfer reveals dynamic regulation of hematopoietic stem cell quiescence upon diet restriction and aging.bioRxiv [Preprint]. 2023 Apr 20:2023.04.18.537360. doi: 10.1101/2023.04.18.537360. bioRxiv. 2023. PMID: 37131596 Free PMC article. Preprint.
-
Exploring the latent space of transcriptomic data with topic modeling.NAR Genom Bioinform. 2025 Apr 22;7(2):lqaf049. doi: 10.1093/nargab/lqaf049. eCollection 2025 Jun. NAR Genom Bioinform. 2025. PMID: 40264683 Free PMC article.
References
-
- Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa JL, Packer JS, Christiansen L, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science. 2018;361(6409):1380–1385. doi: 10.1126/science.aau0730. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources