Brain is also time: good short-term outcome predictions of artificial intelligence in spontaneous intracerebral hemorrhage pave the way for the long-term assessment
- PMID: 38396249
- DOI: 10.1007/s00330-024-10665-z
Brain is also time: good short-term outcome predictions of artificial intelligence in spontaneous intracerebral hemorrhage pave the way for the long-term assessment
Comment on
-
CT-based deep learning model for predicting hospital discharge outcome in spontaneous intracerebral hemorrhage.Eur Radiol. 2024 Jul;34(7):4417-4426. doi: 10.1007/s00330-023-10505-6. Epub 2023 Dec 21. Eur Radiol. 2024. PMID: 38127074
Similar articles
-
Quantification of hematoma and perihematomal edema volumes in intracerebral hemorrhage study: Design considerations in an artificial intelligence validation (QUANTUM) study.Clin Trials. 2022 Oct;19(5):534-544. doi: 10.1177/17407745221105886. Epub 2022 Jul 2. Clin Trials. 2022. PMID: 35786006
-
Total intracranial volume as a covariate for predicting prognosis in patients with primary intracerebral hemorrhage.Clin Neurol Neurosurg. 2022 Mar;214:107135. doi: 10.1016/j.clineuro.2022.107135. Epub 2022 Jan 17. Clin Neurol Neurosurg. 2022. PMID: 35121234
-
Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement.BMC Med Imaging. 2021 Aug 13;21(1):125. doi: 10.1186/s12880-021-00657-6. BMC Med Imaging. 2021. PMID: 34388981 Free PMC article.
-
Noncontrast Computed Tomography Markers of Intracerebral Hemorrhage Expansion.Stroke. 2017 Apr;48(4):1120-1125. doi: 10.1161/STROKEAHA.116.015062. Epub 2017 Mar 13. Stroke. 2017. PMID: 28289239 Free PMC article. Review. No abstract available.
-
Advances in computed tomography-based prognostic methods for intracerebral hemorrhage.Neurosurg Rev. 2022 Jun;45(3):2041-2050. doi: 10.1007/s10143-022-01760-0. Epub 2022 Feb 28. Neurosurg Rev. 2022. PMID: 35226234 Review.
References
-
- Safatli DA, Gunther A, Schlattmann P, Schwarz F, Kalff R, Ewald C (2016) Predictors of 30-day mortality in patients with spontaneous primary intracerebral hemorrhage. Surg Neurol Int 7:S510-517. https://doi.org/10.4103/2152-7806.187493 - DOI - PubMed - PMC
-
- Al-Mufti F, Thabet AM, Singh T, El-Ghanem M, Amuluru K, Gandhi CD (2018) Clinical and radiographic predictors of intracerebral hemorrhage outcome. Interv Neurol 7:118–136. https://doi.org/10.1159/000484571 - DOI - PubMed - PMC
-
- Morotti A, Arba F, Boulouis G, Charidimou A (2020) Noncontrast CT markers of intracerebral hemorrhage expansion and poor outcome: a meta-analysis. Neurology 95:632–643. https://doi.org/10.1212/WNL.0000000000010660 - DOI - PubMed
-
- Zhong JW, Jin YJ, Song ZJ et al (2021) Deep learning for automatically predicting early haematoma expansion in Chinese patients. Stroke Vasc Neurol 6:610–614. https://doi.org/10.1136/svn-2020-000647 - DOI - PubMed - PMC
-
- Katsuki M, Kakizawa Y, Nishikawa A, Yamamoto Y, Uchiyama T (2021) Postsurgical functional outcome prediction model using deep learning framework (Prediction One, Sony Network Communications Inc.) for hypertensive intracerebral hemorrhage. Surg Neurol Int 12:203. https://doi.org/10.25259/SNI_222_2021 - DOI - PubMed - PMC
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources