Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Feb 13;25(4):2258.
doi: 10.3390/ijms25042258.

Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis

Affiliations
Review

Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis

Chrysoula Kosmeri et al. Int J Mol Sci. .

Abstract

Early-onset sepsis (EOS) is a global health issue, considered one of the primary causes of neonatal mortality. Diagnosis of EOS is challenging because its clinical signs are nonspecific, and blood culture, which is the current gold-standard diagnostic tool, has low sensitivity. Commonly used biomarkers for sepsis diagnosis, including C-reactive protein, procalcitonin, and interleukin-6, lack specificity for infection. Due to the disadvantages of blood culture and other common biomarkers, ongoing efforts are directed towards identifying innovative molecular approaches to diagnose neonates at risk of sepsis. This review aims to gather knowledge and recent research on these emerging molecular methods. PCR-based techniques and unrestricted techniques based on 16S rRNA sequencing and 16S-23S rRNA gene interspace region sequencing offer several advantages. Despite their potential, these approaches are not able to replace blood cultures due to several limitations; however, they may prove valuable as complementary tests in neonatal sepsis diagnosis. Several microRNAs have been evaluated and have been proposed as diagnostic biomarkers in EOS. T2 magnetic resonance and bioinformatic analysis have proposed potential biomarkers of neonatal sepsis, though further studies are essential to validate these findings.

Keywords: 16S rRNA; bioinformatics; early-onset sepsis; microRNA; molecular methods.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Similar articles

Cited by

References

    1. Adams-Chapman I., Stoll B.J. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr. Opin. Infect. Dis. 2006;19:290–297. doi: 10.1097/01.qco.0000224825.57976.87. - DOI - PubMed
    1. Stoll B.J., Hansen N., Fanaroff A.A., Wright L.L., Carlo W.A., Ehrenkranz R.A., Lemons J.A., Donovan E.F., Stark A.R., Tyson J.E., et al. Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110:285–291. doi: 10.1542/peds.110.2.285. - DOI - PubMed
    1. Stoll B.J., Hansen N.I., Adams-Chapman I., Fanaroff A.A., Hintz S.R., Vohr B., Higgins R.D. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292:2357–2365. doi: 10.1001/jama.292.19.2357. - DOI - PubMed
    1. Fleischmann C., Reichert F., Cassini A., Horner R., Harder T., Markwart R., Tröndle M., Savova Y., Kissoon N., Schlattmann P., et al. Global incidence and mortality of neonatal sepsis: A systematic review and meta-analysis. Arch. Dis. Child. 2021;106:745–752. doi: 10.1136/archdischild-2020-320217. - DOI - PMC - PubMed
    1. Liu L., Oza S., Hogan D., Perin J., Rudan I., Lawn J.E., Cousens S., Mathers C., Black R.E. Global, regional, and national causes of child mortality in 2000–2013, with projections to inform post-2015 priorities: An updated systematic analysis. Lancet. 2015;385:430–440. doi: 10.1016/S0140-6736(14)61698-6. - DOI - PubMed