Control of protein synthesis in Escherichia coli: control of bacteriophage Q beta coat protein synthesis after energy source shift-down
- PMID: 384018
- PMCID: PMC353321
- DOI: 10.1128/JVI.30.1.267-278.1979
Control of protein synthesis in Escherichia coli: control of bacteriophage Q beta coat protein synthesis after energy source shift-down
Abstract
Escherichia coli Q13 was infected with bacteriophage Q beta and subjected to energy source shift-down (from glucose-minimal to succinate-minimal medium) 20 min after infection. Production of progeny phage was about fourfold slower in down-shifted cultures than in the cultures in glucose medium. Shift-down did not affect the rate of phage RNA replication, as measured by the rate of incorporation of [14C]uracil in the presence of rifampin, with appropriate correction for the reduced entry of exogenous uracil into the UTP pool. Phage coat protein synthesis was three- to sixfold slower in down-shifted cells than in exponentially growing cells, as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The polypeptide chain propagation rate in infected cells was unaffected by the down-shift. Thus, the reduced production of progeny phage in down-shifted cells appears to result from control of phage protein synthesis at the level of initiation of translation. The reduction in the rate of Q beta coat protein synthesis is comparable to the previously described reduction in the rate of synthesis of total E. coli protein and of beta-galactosidase, implying that the mechanism which inhibits translation in down-shifted cells is neither messenger specific nor specific for 5' proximal cistrons. The intracellular ATP pool size was nearly constant after shift-down; general energy depletion is thus not a predominant factor. The GTP pool, by contrast, declined by about 40%. Also, ppGpp did not accumulate in down-shifted, infected cells in the presence of rifampin, indicating that ppGpp is not the primary effector of this translational inhibition.
Similar articles
-
Accumulation of 70S monoribosomes in Escherichia coli after energy source shift-down.J Bacteriol. 1972 Jul;111(1):142-51. doi: 10.1128/jb.111.1.142-151.1972. J Bacteriol. 1972. PMID: 4591472 Free PMC article.
-
Polysomal localization of R17 bacteriophage-specific protein synthesis.J Virol. 1972 Jan;9(1):75-84. doi: 10.1128/JVI.9.1.75-84.1972. J Virol. 1972. PMID: 4550780 Free PMC article.
-
Synthesis and turnover of basal level guanosine tetraphosphate in Escherichia coli.J Biol Chem. 1975 Jan 10;250(1):304-9. J Biol Chem. 1975. PMID: 1095568
-
Effect of rifampin on the development of ribonucleic acid bacteriophage Q.J Virol. 1971 Sep;8(3):286-92. doi: 10.1128/JVI.8.3.286-292.1971. J Virol. 1971. PMID: 4940929 Free PMC article.
-
Bacteriophage f1 infection of Escherichia coli: identification and possible processing of f1-specific mRNAs in vivo.Proc Natl Acad Sci U S A. 1979 Mar;76(3):1169-73. doi: 10.1073/pnas.76.3.1169. Proc Natl Acad Sci U S A. 1979. PMID: 375228 Free PMC article.
Cited by
-
Control of protein synthesis in Escherichia coli: strain differences in control of translational initiation after energy source shift-down.J Bacteriol. 1980 Jun;142(3):888-98. doi: 10.1128/jb.142.3.888-898.1980. J Bacteriol. 1980. PMID: 6155375 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources