Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Oct:228:116078.
doi: 10.1016/j.bcp.2024.116078. Epub 2024 Feb 23.

Drug Mechanism: A bioinformatic update

Affiliations
Review

Drug Mechanism: A bioinformatic update

Martina Cirinciani et al. Biochem Pharmacol. 2024 Oct.

Abstract

A drug Mechanism of Action (MoA) is a complex biological phenomenon that describes how a bioactive compound produces a pharmacological effect. The complete knowledge of MoA is fundamental to fully understanding the drug activity. Over the years, many experimental methods have been developed and a huge quantity of data has been produced. Nowadays, considering the increasing omics data availability and the improvement of the accessible computational resources, the study of a drug MoA is conducted by integrating experimental and bioinformatics approaches. The development of new in silico solutions for this type of analysis is continuously ongoing; herein, an updating review on such bioinformatic methods is presented. The methodologies cited are based on multi-omics data integration in biochemical networks and Machine Learning (ML). The multiple types of usable input data and the advantages and disadvantages of each method have been analyzed, with a focus on their applications. Three specific research areas (i.e. cancer drug development, antibiotics discovery, and drug repurposing) have been chosen for their importance in the drug discovery fields in which the study of drug MoA, through novel bioinformatics approaches, is particularly productive.

Keywords: Bioinformatics; Drug Mechanism of Action; Drug development; Machine Learning; Omics data; Systems Biology.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

Substances

LinkOut - more resources