Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jun;25(3):567-581.
doi: 10.1007/s10522-024-10093-y. Epub 2024 Feb 26.

The SGLT2 inhibitor empagliflozin inhibits skeletal muscle fibrosis in naturally aging male mice through the AMPKα/MMP9/TGF-β1/Smad pathway

Affiliations

The SGLT2 inhibitor empagliflozin inhibits skeletal muscle fibrosis in naturally aging male mice through the AMPKα/MMP9/TGF-β1/Smad pathway

Qixuan Huang et al. Biogerontology. 2024 Jun.

Abstract

With advancing age, the incidence of sarcopenia increases, eventually leading to a cascade of adverse events. However, there is currently a lack of effective pharmacological treatment for sarcopenia. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) empagliflozin demonstrates anti-fibrotic capabilities in various organs. This study aims to determine whether empagliflozin can improve skeletal muscle fibrosis induced by sarcopenia in naturally aging mice. A natural aging model was established by feeding male mice from 13 months of age to 19 months of age. A fibrosis model was created by stimulating skeletal muscle fibroblasts with TGF-β1. The Forelimb grip strength test assessed skeletal muscle function, and expression levels of COL1A1, COL3A1, and α-SMA were analyzed by western blot, qPCR, and immunohistochemistry. Additionally, levels of AMPKα/MMP9/TGFβ1/Smad signaling pathways were examined. In naturally aging mice, skeletal muscle function declines, expression of muscle fibrosis markers increases, AMPKα expression is downregulated, and MMP9/TGFβ1/Smad signaling pathways are upregulated. However, treatment with empagliflozin reverses this phenomenon. At the cellular level, empagliflozin exhibits similar anti-fibrotic effects, and these effects are attenuated by Compound C and siAMPKα. Empagliflozin exhibits anti-fibrotic effects, possibly associated with the AMPK/MMP9/TGFβ1/Smad signaling pathways.

Keywords: AMPKα; Empagliflozin; Fibrosis; Sarcopenia; Smad; TGFβ1.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Aragon AA, Tipton KD, Schoenfeld BJ (2023) Age-related muscle anabolic resistance: inevitable or preventable? Nutr Rev 81:441–454. https://doi.org/10.1093/nutrit/nuac062 - DOI - PubMed
    1. Arthur ST, Cooley ID (2012) The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int J Biol Sci 8:731–760. https://doi.org/10.7150/ijbs.4262 - DOI - PubMed - PMC
    1. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810 - DOI - PubMed
    1. Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, Toan S, Muid D, Tan Y (2022) Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol 52:102288. https://doi.org/10.1016/j.redox.2022.102288 - DOI - PubMed - PMC
    1. Chen S, Coronel R, Hollmann MW, Weber NC, Zuurbier CJ (2022) Direct cardiac effects of SGLT2 inhibitors. Cardiovasc Diabetol 21:45. https://doi.org/10.1186/s12933-022-01480-1 - DOI - PubMed - PMC

MeSH terms

LinkOut - more resources