Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 9:15:1340644.
doi: 10.3389/fendo.2024.1340644. eCollection 2024.

Association between the ZJU index and risk of new-onset non-alcoholic fatty liver disease in non-obese participants: a Chinese longitudinal prospective cohort study

Affiliations

Association between the ZJU index and risk of new-onset non-alcoholic fatty liver disease in non-obese participants: a Chinese longitudinal prospective cohort study

Keyang Zheng et al. Front Endocrinol (Lausanne). .

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is increasingly observed in non-obese individuals. The ZJU (Zhejiang University) index has been established as a new and efficient tool for detecting NAFLD, but the relationship between the ZJU index and NAFLD within non-obese individuals still remains unclear.

Methods: A post-hoc evaluation was undertaken using data from a health assessment database by the Wenzhou Medical Center. The participants were divided into four groups based on the quartile of the ZJU Index. Cox proportional hazards regression, Kaplan-Meier analysis and tests for linear trends were used to evaluate the relationship between the ZJU index and NAFLD incidence. Subgroup analysis was conducted to test the consistency of the correlation between ZJU and NAFLD in subsgroups. Receiver operative characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the ZJU index, compared with the Atherogenic index of plasma (AIP) and Remnant lipoprotein cholesterol (RLP-C) index.

Results: A total of 12,127 were included in this study, and 2,147 participants (17.7%) developed NAFLD in 5 years follow-up. Participants in higher ZJU quartiles tended to be female and have higher liver enzymes (including ALP, GGT, ALT, AST), GLU, TC, TG, LDL and higher NAFLD risk. Hazard Ratios (HR) and 95% confidence intervals (CI) for new-onset NAFLD in Q2, Q3, and Q4 were 3.67(2.43 to 5.55), 9.82(6.67 to 14.45), and 21.67(14.82 to 31.69) respectively in the fully adjusted model 3. With increased ZJU index, the cumulative new-onset NAFLD gradually increased. Significant linear associations were observed between the ZJU index and new-onset NAFLD (p for trend all<0.001). In the subgroup analysis, we noted a significant interaction in sex, with HRs of 3.27 (2.81, 3.80) in female and 2.41 (2.21, 2.63) in male (P for interaction<0.01). The ZJU index outperformed other indices with an area under the curve (AUC) of 0.823, followed by AIP (AUC=0.747) and RLP-C (AUC=0.668).

Conclusion: The ZJU index emerges as a promising tool for predicting NAFLD risk in non-obese individuals, outperforming other existing parameters including AIP and RLP-C. This could potentially aid in early detection and intervention in this specific demographic.

Keywords: fatty liver index; non-alcoholic fatty liver disease; non-obese population; obesity; the ZJU index.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Inclusion and exclusion flow chart for the longitudinal cohort.
Figure 2
Figure 2
Kaplan–Meier estimation of new-onset NAFLD by ZJU quartiles. NAFLD, non-alcoholic fatty liver disease.
Figure 3
Figure 3
Receiver operative characteristic curve of ZJU index, AIP and RLP-C for identifying NAFLD. NAFLD, non-alcoholic fatty liver disease; AIP, Atherogenic index of plasma; RLP-C, Remnant lipoprotein cholesterol.

Similar articles

Cited by

References

    1. Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. . Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord (2022) 22(1):63. doi: 10.1186/s12902-022-00980-1 - DOI - PMC - PubMed
    1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology (2016) 64(1):73–84. doi: 10.1002/hep.28431 - DOI - PubMed
    1. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, et al. . Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology (2019) 69(6):2672–82. doi: 10.1002/hep.30251 - DOI - PubMed
    1. Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet (2021) 397(10290):2212–24. doi: 10.1016/S0140-6736(20)32511-3 - DOI - PubMed
    1. Ye Q, Zou B, Yeo YH, Li J, Huang DQ, Wu Y, et al. . Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol (2020) 5(8):739–52. doi: 10.1016/S2468-1253(20)30077-7 - DOI - PubMed