Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Sep 17:2024.02.12.24302716.
doi: 10.1101/2024.02.12.24302716.

Fine-mapping genomic loci refines bipolar disorder risk genes

Maria Koromina  1   2   3 Ashvin Ravi  3   4   5   6 Georgia Panagiotaropoulou  7 Brian M Schilder  3   5   6 Jack Humphrey  3   4   5   6 Alice Braun  7 Tim Bidgeli  8 Chris Chatzinakos  8 Brandon Coombes  9 Jaeyoung Kim  10   11 Xiaoxi Liu  12   13 Chikashi Terao  12   13   14 Kevin S O 'Connell  15   16 Mark Adams  17 Adolfsson Rolf  18 Martin Alda  19   20 Lars Alfredsson  21 Till F M Andlauer  22 Ole A Andreassen  15   16 Anastasia Antoniou  23 Bernhard T Baune  24   25   26 Susanne Bengesser  27 Joanna Biernacka  28   29 Michael Boehnke  30 Rosa Bosch  31   32 Murray J Cairns  33 Vaughan J Carr  34 Miquel Casas  31   32 Stanley Catts  35 Sven Cichon  36   37   38   39 Aiden Corvin  40 Nicholas Craddock  41 Konstantinos Dafnas  23 Nina Dalkner  27 Udo Dannlowski  42 Franziska Degenhardt  37   43 Arianna Di Florio  41   44 Dimitris Dikeos  23 Frederike Tabea Fellendorf  27 Panagiotis Ferentinos  23   45 Andreas J Forstner  37   39   46 Liz Forty  41 Mark Frye  29 Janice M Fullerton  47   48 Micha Gawlik  49 Ian R Gizer  50 Katherine Gordon-Smith  51 Melissa J Green  47   52 Maria Grigoroiu-Serbanescu  53 José Guzman-Parra  54 Tim Hahn  42 Frans Henskens  33 Jan Hillert  55 Assen V Jablensky  56 Lisa Jones  51 Ian Jones  41 Lina Jonsson  57 John R Kelsoe  58 Tilo Kircher  59 George Kirov  41 Sarah Kittel-Schneider  49   60   61 Manolis Kogevinas  62 Mikael Landén  57   63 Marion Leboyer  64   65 Melanie Lenger  27 Jolanta Lissowska  66 Christine Lochner  67 Carmel Loughland  33 Donald MacIntyre  17 Nicholas G Martin  68   69 Eirini Maratou  70 Carol A Mathews  71 Fermin Mayoral  54 Susan L McElroy  72 Nathaniel W McGregor  73 Andrew McIntosh  17 Andrew McQuillin  74 Patricia Michie  33 Philip B Mitchell  52 Paraskevi Moutsatsou  75 Bryan Mowry  35 Bertram Müller-Myhsok  76   77 Richard M Myers  78 Igor Nenadić  79   80 Caroline Nievergelt  58   81 Markus M Nöthen  37 John Nurnberger  82   83   84 Michael O 'Donovan  41 Claire O'Donovan  19 Roel A Ophoff  85   86   87 Michael J Owen  41 Christos Pantelis  88 Carlos Pato  89 Michele T Pato  89 George P Patrinos  90   91   92   93 Joanna M Pawlak  94 Roy H Perlis  95   96 Evgenia Porichi  97 Danielle Posthuma  98   99 Josep Antoni Ramos-Quiroga  31   100   101   102 Andreas Reif  60 Eva Z Reininghaus  27 Marta Ribasés  31   100   102   103 Marcella Rietschel  104 Ulrich Schall  33 Peter R Schofield  47   48 Thomas G Schulze  104   105   106   107   108 Laura Scott  30 Rodney J Scott  33 Alessandro Serretti  109   110 Cynthia Shannon Weickert  52   111 Jordan W Smoller  112   113   114 Maria Soler Artigas  31   115   116   117 Dan J Stein  118 Fabian Streit  104   119   120   121 Claudio Toma  47   52   122 Paul Tooney  33 Marquis P Vawter  123   124 Eduard Vieta  125 John B Vincent  126 Irwin D Waldman  127 Thomas Weickert  52   111 Stephanie H Witt  104 Kyung Sue Hong  128 Masashi Ikeda  129 Nakao Iwata  129 Beata Świątkowska  130 Hong-Hee Won  10 Howard J Edenberg  131   132 Stephan Ripke  7   133 Towfique Raj  3   5   6 Jonathan R I Coleman  45   134 Niamh Mullins  1   2   3
Affiliations

Fine-mapping genomic loci refines bipolar disorder risk genes

Maria Koromina et al. medRxiv. .

Update in

  • Fine-mapping genomic loci refines bipolar disorder risk genes.
    Koromina M, Ravi A, Panagiotaropoulou G, Schilder BM, Humphrey J, Braun A, Bidgeli T, Chatzinakos C, Coombes BJ, Kim J, Liu X, Terao C, O'Connell KS, Adams MJ, Adolfsson R, Alda M, Alfredsson L, Andlauer TFM, Andreassen OA, Antoniou A, Baune BT, Bengesser S, Biernacka J, Boehnke M, Bosch R, Cairns MJ, Carr VJ, Casas M, Catts S, Cichon S, Corvin A, Craddock N, Dafnas K, Dalkner N, Dannlowski U, Degenhardt F, Di Florio A, Dikeos D, Fellendorf FT, Ferentinos P, Forstner AJ, Forty L, Frye M, Fullerton JM, Gawlik M, Gizer IR, Gordon-Smith K, Green MJ, Grigoroiu-Serbanescu M, Guzman-Parra J, Hahn T, Henskens F, Hillert J, Jablensky AV, Jones L, Jones I, Jonsson L, Kelsoe JR, Kircher T, Kirov G, Kittel-Schneider S, Kogevinas M, Landén M, Leboyer M, Lenger M, Lissowska J, Lochner C, Loughland C, MacIntyre DJ, Martin NG, Maratou E, Mathews CA, Mayoral F, McElroy SL, McGregor NW, McIntosh A, McQuillin A, Michie P, Mitchell PB, Moutsatsou P, Mowry B, Müller-Myhsok B, Myers RM, Nenadić I, Nievergelt CM, Nöthen MM, Nurnberger J, 'Donovan MO, 'Donovan CO, Ophoff RA, Owen MJ, Pantelis C, Pato C, Pato MT, Patrinos GP, Pawlak JM, Perlis RH, Porichi E, Posthuma D, Ramos-Quiroga JA, Reif A, Reiningh… See abstract for full author list ➔ Koromina M, et al. Nat Neurosci. 2025 Jul;28(7):1393-1403. doi: 10.1038/s41593-025-01998-z. Epub 2025 Jun 25. Nat Neurosci. 2025. PMID: 40562893 Free PMC article.

Abstract

Bipolar disorder (BD) is a heritable mental illness with complex etiology. While the largest published genome-wide association study identified 64 BD risk loci, the causal SNPs and genes within these loci remain unknown. We applied a suite of statistical and functional fine-mapping methods to these loci, and prioritized 17 likely causal SNPs for BD. We mapped these SNPs to genes, and investigated their likely functional consequences by integrating variant annotations, brain cell-type epigenomic annotations, brain quantitative trait loci, and results from rare variant exome sequencing in BD. Convergent lines of evidence supported the roles of genes involved in neurotransmission and neurodevelopment including SCN2A, TRANK1, DCLK3, INSYN2B, SYNE1, THSD7A, CACNA1B, TUBBP5, PLCB3, PRDX5, KCNK4, CRTC3, AP001453.3, TRPT1, FKBP2, DNAJC4, RASGRP1, FURIN, FES, DPH1, GSDMB, MED24 and THRA in BD. These represent promising candidates for functional experiments to understand biological mechanisms and therapeutic potential. Additionally, we demonstrated that fine-mapping effect sizes can improve performance of BD polygenic risk scores across diverse populations, and present a high-throughput fine-mapping pipeline (https://github.com/mkoromina/SAFFARI).

PubMed Disclaimer

Conflict of interest statement

Competing interests OAA has served as a speaker for Janssen, Lundbeck, and Sunovion and as a consultant for Cortechs.ai. SKS has served as speaker for Janssen, Takeda and Medice Arzneimittel Puetter GmbH & CoKG. EV has received grants and served as consultant, advisor or CME speaker for the following entities (unrelated to the present work): AB-Biotics, Abbott, Abbvie, Adamed, Angelini, Biogen, Biohaven, Boehringer Ingelheim, Casen-Recordati, Celon, Compass, Dainippon Sumitomo Pharma, Ethypharm, Ferrer, Gedeon Richter, GH Research, Glaxo Smith-Kline, Idorsia, Janssen, Johnson & Johnson, Lundbeck, Newron, Novartis, Organon, Otsuka, Rovi, Sage, Sanofi-Aventis, Sunovion, Takeda, and Viatris. PBM has received remuneration from Janssen (Australia) and Sanofi (Hangzhou) for lectures, and Janssen (Australia) for advisory board membership. MOD and MJO have received grants from Akrivia Health and Takeda Pharmaceuticals for work unrelated to this project.

Figures

Figure 1.
Figure 1.. Schematic workflow of the fine-mapping pipeline developed for BD GWAS risk loci.
Conditional analyses were performed within GWS loci using GCTA-COJO, based on the linkage disequilibrium (LD) structure of the Haplotype Reference Consortium (HRC) reference panel. Fine-mapping was conducted using statistical (SuSiE and FINEMAP) and functionally-informed (PolyFun) methods, according to the LD structure of the HRC, UK Biobank (UKB), and a subset of the GWAS data (“in-sample LD”), as well as implementing single-variant (no LD) fine-mapping. PolyFun functional priors were based on the published baseline-LF2.2 UKB model. Fine-mapping results were validated computationally via Variant Effect Predictor (VEP) annotations and functional consequences, overlap with epigenomic peaks from brain cell-types, Summary-data-based Mendelian Randomization analysis (SMR) with brain expression, splicing and methylation QTL data, convergence with rare variant associations from the Bipolar Exome Sequencing Collaboration (BipEx), and testing whether fine-mapping effect sizes improve polygenic risk scores (PRS-CS and PolyPred). *The major histocompatibility complex (MHC) was fine-mapped using separate procedures (see section ‘Fine-mapping the MHC locus’).
Figure 2.
Figure 2.. Results and comparison of 16 fine-mapping analyses conducted.
The barplot displays the number of SNPs fine-mapped with PIP > 0.5 and part of a 95% credible set on the y-axis and each fine-mapping analysis on the x-axis. The black bordered bars indicate the number of SNPs fine-mapped with PIP > 0.95 and part of a 95% credible set. Each analysis is named according to [LD option]_[fine-mapping method]. The heatmap displays the Jaccard Index of concordance between each pair of fine-mapping analyses, calculated based on SNPs with PIP > 0.5 and part of a 95% credible set. Jaccard Indices ranged from 0.25 and 1, with a mean Jaccard Index of 0.54 (SD = 0.20).
Figure 3.
Figure 3.. Plot of union consensus SNPs across all 16 fine-mapping analyses, including different LD options and fine-mapping methods.
The color of the points corresponds to the LD option used: UK Biobank (pink), Haplotype Reference Consortium (blue), in-sample LD (purple) and no LD (single variant fine-mapping) (grey). Circles indicate statistical fine-mapping methods and squares indicate functional fine-mapping methods. Small shapes denote SNPs with PIP between 0.50 and 0.90, while large shapes denote SNPs with PIP above 0.95. On the y axis, the genome-wide significant locus names, as defined in the origins GWAS paper, are in parenthesis after each SNP. On the x-axis, analyses are named according to [LD option] [fine-mapping method].
Figure 4.
Figure 4.. Summary of analyses performed to link each fine-mapped SNP to the relevant gene(s).
The y-axis shows the 17 union consensus SNPs and the name of the corresponding genome-wide significant locus (as defined in the original GWAS). On the x-axis, the columns depict the results of 8 analyses performed to link the fine-mapped SNPs to the relevant gene(s). The analysis method and the dataset used are labeled above and below the figure respectively. Colored cells denote significant results and the relevant gene names are printed within each cell. For fine-mapped SNPs located in active enhancers, the relevant genes were obtained using data on PLAC-seq interactions with gene promoters. A colored cell includes no gene name when there was no known interaction between the enhancer and a promoter, or when the methylation probe was not annotated to any gene. Empty cells are those with non-significant results, or where the SNP was not present in the dataset used.
Figure 5.
Figure 5.. Phenotypic variance in BD explained by standard PRS (PRS-CS) and fine-mapping-informed PRS (SuSiE+PRS-CS and PolyPred-P) in target cohorts of diverse genetic ancestries.
The x-axis displays the target cohorts, grouped by genetic ancestry, and the PRS method used. The name of each cohort and the number of BD cases and controls is shown below each barplot. The y-axis shows the percentage variance explained on the liability scale, assuming a 2% population prevalence of BD. Error bars represent 95% confidence intervals on the variance explained. P-values for the association of PRS with case versus control status are printed on top of each bar. Significant P-values (P < 0.05) for the test of difference in variance explained by the fine-mapping informed PRS versus PRS-CS are provided above the horizontal lines.

Similar articles

  • Fine-mapping genomic loci refines bipolar disorder risk genes.
    Koromina M, Ravi A, Panagiotaropoulou G, Schilder BM, Humphrey J, Braun A, Bidgeli T, Chatzinakos C, Coombes BJ, Kim J, Liu X, Terao C, O'Connell KS, Adams MJ, Adolfsson R, Alda M, Alfredsson L, Andlauer TFM, Andreassen OA, Antoniou A, Baune BT, Bengesser S, Biernacka J, Boehnke M, Bosch R, Cairns MJ, Carr VJ, Casas M, Catts S, Cichon S, Corvin A, Craddock N, Dafnas K, Dalkner N, Dannlowski U, Degenhardt F, Di Florio A, Dikeos D, Fellendorf FT, Ferentinos P, Forstner AJ, Forty L, Frye M, Fullerton JM, Gawlik M, Gizer IR, Gordon-Smith K, Green MJ, Grigoroiu-Serbanescu M, Guzman-Parra J, Hahn T, Henskens F, Hillert J, Jablensky AV, Jones L, Jones I, Jonsson L, Kelsoe JR, Kircher T, Kirov G, Kittel-Schneider S, Kogevinas M, Landén M, Leboyer M, Lenger M, Lissowska J, Lochner C, Loughland C, MacIntyre DJ, Martin NG, Maratou E, Mathews CA, Mayoral F, McElroy SL, McGregor NW, McIntosh A, McQuillin A, Michie P, Mitchell PB, Moutsatsou P, Mowry B, Müller-Myhsok B, Myers RM, Nenadić I, Nievergelt CM, Nöthen MM, Nurnberger J, 'Donovan MO, 'Donovan CO, Ophoff RA, Owen MJ, Pantelis C, Pato C, Pato MT, Patrinos GP, Pawlak JM, Perlis RH, Porichi E, Posthuma D, Ramos-Quiroga JA, Reif A, Reiningh… See abstract for full author list ➔ Koromina M, et al. Nat Neurosci. 2025 Jul;28(7):1393-1403. doi: 10.1038/s41593-025-01998-z. Epub 2025 Jun 25. Nat Neurosci. 2025. PMID: 40562893 Free PMC article.
  • Immune, Developmental, and Synaptic Pathways Define Bipolar Disorder Clinical Heterogeneity.
    van der Veen T, Tesfaye M, Yang JMK, Boltz T, David FS, Crinion S, Koromina M, Andlauer TFM, Bigdeli TB, Coombes BJ, Greenwood TA, Panagiotaropoulou G, Parker N, Sung H, Bass N, Coleman JRI, Guzman-Parra J, Kalman JL, McGrouther CC, Mitchell BL, Rangan AV, Scott K, Shadrin A, Smith DJ, Vreeker A, Adorjan K, Albani D, Alemany S, Alliey-Rodriguez N, Antoniou A, Bauer M, Beins EC, Boks MP, Bosch R, Brumpton BM, Brunkhorst-Kanaan N, Budde M, Byerley W, Cabana-Domínguez J, Cairns MJ, Carpiniello B, Casas M, Cervantes P, Chatzinakos C, Clarke TK, Claus I, Cruceanu C, Cuellar-Barboza A, Czerski PM, Dafnas K, Dale AM, Dalkner N, DePaulo JR, Degenhardt F, Djurovic S, Escott-Price V, Fanous AH, Fellendorf FT, Ferrier IN, Forty L, Frank J, Frei O, Freimer NB, Garnham J, Gizer IR, Gordon SD, Gordon-Smith K, Hahn T, Marian L, Harder A, Hautzinger M, Heilbronner U, Hellgren D, Herms S, Hickie IB, Hoffmann P, Holmans PA, Jamain S, Jonsson L, Kennedy JL, Kittel-Schneider S, Knowles JA, Koch E, Kogevinas M, Kranz TM, Kushner SA, Lavebratt C, Lawrence J, Leber M, Lind PA, Lucae S, Lundberg M, MacIntyre DJ, Maier W, Maihofer AX, Malaspina D, Manchia M, Maratou E, Martinsson L, McInnis MG, McKay JD, … See abstract for full author list ➔ van der Veen T, et al. medRxiv [Preprint]. 2025 Jun 27:2025.06.23.25330155. doi: 10.1101/2025.06.23.25330155. medRxiv. 2025. PMID: 40666370 Free PMC article. Preprint.
  • Identification of shared risk loci and pathways for bipolar disorder and schizophrenia.
    Forstner AJ, Hecker J, Hofmann A, Maaser A, Reinbold CS, Mühleisen TW, Leber M, Strohmaier J, Degenhardt F, Treutlein J, Mattheisen M, Schumacher J, Streit F, Meier S, Herms S, Hoffmann P, Lacour A, Witt SH, Reif A, Müller-Myhsok B, Lucae S, Maier W, Schwarz M, Vedder H, Kammerer-Ciernioch J, Pfennig A, Bauer M, Hautzinger M, Moebus S, Schenk LM, Fischer SB, Sivalingam S, Czerski PM, Hauser J, Lissowska J, Szeszenia-Dabrowska N, Brennan P, McKay JD, Wright A, Mitchell PB, Fullerton JM, Schofield PR, Montgomery GW, Medland SE, Gordon SD, Martin NG, Krasnov V, Chuchalin A, Babadjanova G, Pantelejeva G, Abramova LI, Tiganov AS, Polonikov A, Khusnutdinova E, Alda M, Cruceanu C, Rouleau GA, Turecki G, Laprise C, Rivas F, Mayoral F, Kogevinas M, Grigoroiu-Serbanescu M, Becker T, Schulze TG, Rietschel M, Cichon S, Fier H, Nöthen MM. Forstner AJ, et al. PLoS One. 2017 Feb 6;12(2):e0171595. doi: 10.1371/journal.pone.0171595. eCollection 2017. PLoS One. 2017. PMID: 28166306 Free PMC article.
  • How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.
    May CR, Gravenhorst KC, Hillis A, Arber M, Chew-Graham CA, Gallacher KI, Mair FS, Nolte E, Richardson A. May CR, et al. Health Soc Care Deliv Res. 2025 Jun;13(24):1-120. doi: 10.3310/HGTQ8159. Health Soc Care Deliv Res. 2025. PMID: 40548558
  • The complex genetic architecture of Alzheimer's disease: novel insights and future directions.
    Andrews SJ, Renton AE, Fulton-Howard B, Podlesny-Drabiniok A, Marcora E, Goate AM. Andrews SJ, et al. EBioMedicine. 2023 Apr;90:104511. doi: 10.1016/j.ebiom.2023.104511. Epub 2023 Mar 10. EBioMedicine. 2023. PMID: 36907103 Free PMC article. Review.

References

    1. O’Connell K. S. & Coombes B. J. Genetic contributions to bipolar disorder: current status and future directions. Psychol. Med. 51, 2156–2167 (2021). - PMC - PubMed
    1. Craddock N. & Sklar P. Genetics of bipolar disorder. Lancet 381, 1654–1662 (2013). - PubMed
    1. McGuffin P. et al. The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry 60, 497–502 (2003). - PubMed
    1. Smoller J. W. & Finn C. T. Family, twin, and adoption studies of bipolar disorder. Am. J. Med. Genet. C Semin. Med. Genet. 123C, 48–58 (2003). - PubMed
    1. Stahl E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019). - PMC - PubMed

Publication types