SEMORE: SEgmentation and MORphological fingErprinting by machine learning automates super-resolution data analysis
- PMID: 38409214
- PMCID: PMC10897458
- DOI: 10.1038/s41467-024-46106-0
SEMORE: SEgmentation and MORphological fingErprinting by machine learning automates super-resolution data analysis
Abstract
The morphology of protein assemblies impacts their behaviour and contributes to beneficial and aberrant cellular responses. While single-molecule localization microscopy provides the required spatial resolution to investigate these assemblies, the lack of universal robust analytical tools to extract and quantify underlying structures limits this powerful technique. Here we present SEMORE, a semi-automatic machine learning framework for universal, system- and input-dependent, analysis of super-resolution data. SEMORE implements a multi-layered density-based clustering module to dissect biological assemblies and a morphology fingerprinting module for quantification by multiple geometric and kinetics-based descriptors. We demonstrate SEMORE on simulations and diverse raw super-resolution data: time-resolved insulin aggregates, and published data of dSTORM imaging of nuclear pore complexes, fibroblast growth receptor 1, sptPALM of Syntaxin 1a and dynamic live-cell PALM of ryanodine receptors. SEMORE extracts and quantifies all protein assemblies, their temporal morphology evolution and provides quantitative insights, e.g. classification of heterogeneous insulin aggregation pathways and NPC geometry in minutes. SEMORE is a general analysis platform for super-resolution data, and being a time-aware framework can also support the rise of 4D super-resolution data.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Ultrafast data mining of molecular assemblies in multiplexed high-density super-resolution images.Nat Commun. 2019 Jan 10;10(1):119. doi: 10.1038/s41467-018-08048-2. Nat Commun. 2019. PMID: 30631072 Free PMC article.
-
DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning.Nat Methods. 2023 Dec;20(12):1939-1948. doi: 10.1038/s41592-023-01966-0. Epub 2023 Jul 27. Nat Methods. 2023. PMID: 37500760
-
Localization-based super-resolution imaging meets high-content screening.Nat Methods. 2017 Dec;14(12):1184-1190. doi: 10.1038/nmeth.4486. Epub 2017 Oct 30. Nat Methods. 2017. PMID: 29083400
-
Quantitative Data Analysis in Single-Molecule Localization Microscopy.Trends Cell Biol. 2020 Nov;30(11):837-851. doi: 10.1016/j.tcb.2020.07.005. Epub 2020 Aug 20. Trends Cell Biol. 2020. PMID: 32830013 Review.
-
Quantitative Single-Molecule Localization Microscopy.Annu Rev Biophys. 2023 May 9;52:139-160. doi: 10.1146/annurev-biophys-111622-091212. Annu Rev Biophys. 2023. PMID: 37159293 Free PMC article. Review.
Cited by
-
AI analysis of super-resolution microscopy: Biological discovery in the absence of ground truth.J Cell Biol. 2024 Aug 5;223(8):e202311073. doi: 10.1083/jcb.202311073. Epub 2024 Jun 12. J Cell Biol. 2024. PMID: 38865088 Free PMC article. Review.
-
ECLiPSE: a versatile classification technique for structural and morphological analysis of 2D and 3D single-molecule localization microscopy data.Nat Methods. 2024 Oct;21(10):1909-1915. doi: 10.1038/s41592-024-02414-3. Epub 2024 Sep 10. Nat Methods. 2024. PMID: 39256629 Free PMC article.
-
From Biophysics to Biomedical Physics.ACS Bio Med Chem Au. 2024 Dec 19;5(3):320-333. doi: 10.1021/acsbiomedchemau.4c00096. eCollection 2025 Jun 18. ACS Bio Med Chem Au. 2024. PMID: 40556778 Free PMC article. Review.
-
Guardians of memory: The urgency of early dementia screening in an aging society.Intractable Rare Dis Res. 2024 Aug 31;13(3):133-137. doi: 10.5582/irdr.2024.01026. Intractable Rare Dis Res. 2024. PMID: 39220280 Free PMC article. Review.
-
Advancing Multicolor Super-Resolution Volume Imaging: Illuminating Complex Cellular Dynamics.JACS Au. 2025 Jun 9;5(6):2388-2419. doi: 10.1021/jacsau.5c00314. eCollection 2025 Jun 23. JACS Au. 2025. PMID: 40575297 Free PMC article. Review.
References
-
- Laursen T, et al. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science. 2016;354:890–893. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical