Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug;21(8):1470-1480.
doi: 10.1038/s41592-024-02201-0. Epub 2024 Feb 26.

scGPT: toward building a foundation model for single-cell multi-omics using generative AI

Affiliations

scGPT: toward building a foundation model for single-cell multi-omics using generative AI

Haotian Cui et al. Nat Methods. 2024 Aug.

Abstract

Generative pretrained models have achieved remarkable success in various domains such as language and computer vision. Specifically, the combination of large-scale diverse datasets and pretrained transformers has emerged as a promising approach for developing foundation models. Drawing parallels between language and cellular biology (in which texts comprise words; similarly, cells are defined by genes), our study probes the applicability of foundation models to advance cellular biology and genetic research. Using burgeoning single-cell sequencing data, we have constructed a foundation model for single-cell biology, scGPT, based on a generative pretrained transformer across a repository of over 33 million cells. Our findings illustrate that scGPT effectively distills critical biological insights concerning genes and cells. Through further adaptation of transfer learning, scGPT can be optimized to achieve superior performance across diverse downstream applications. This includes tasks such as cell type annotation, multi-batch integration, multi-omic integration, perturbation response prediction and gene network inference.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020). - PubMed
    1. Preissl, S., Gaulton, K. J. & Ren, B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat. Rev. Genet. 24, 21–43 (2022).
    1. Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022). - PubMed - PMC
    1. Wagner, D. E. & Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat. Rev. Genet. 21, 410–427 (2020). - PubMed - PMC
    1. Regev, A. Science Forum: the Human Cell Atlas. eLife 6, e27041 (2017). - PubMed - PMC

LinkOut - more resources