Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2024 Feb 13:2024.02.12.24302043.
doi: 10.1101/2024.02.12.24302043.

Differences in polygenic score distributions in European ancestry populations: implications for breast cancer risk prediction

Kristia Yiangou  1 Nasim Mavaddat  2 Joe Dennis  2 Maria Zanti  1 Qin Wang  2 Manjeet K Bolla  2 Mustapha Abubakar  3 Thomas U Ahearn  3 Irene L Andrulis  4   5 Hoda Anton-Culver  6 Natalia N Antonenkova  7 Volker Arndt  8 Kristan J Aronson  9 Annelie Augustinsson  10 Adinda Baten  11 Sabine Behrens  12 Marina Bermisheva  13   14 Amy Berrington de Gonzalez  15 Katarzyna Białkowska  16 Nicholas Boddicker  17 Clara Bodelon  18 Natalia V Bogdanova  7   19   20 Stig E Bojesen  21   22   23 Kristen D Brantley  24 Hiltrud Brauch  25   26   27 Hermann Brenner  8   28   29 Nicola J Camp  30 Federico Canzian  31 Jose E Castelao  32 Melissa H Cessna  33   34 Jenny Chang-Claude  12   35 Georgia Chenevix-Trench  36 Wendy K Chung  37 NBCS CollaboratorsSarah V Colonna  30 Fergus J Couch  38 Angela Cox  39 Simon S Cross  40 Kamila Czene  41 Mary B Daly  42 Peter Devilee  43   44 Thilo Dörk  20 Alison M Dunning  45 Diana M Eccles  46 A Heather Eliassen  24   47   48 Christoph Engel  49   50 Mikael Eriksson  41 D Gareth Evans  51   52 Peter A Fasching  53 Olivia Fletcher  54 Henrik Flyger  55 Lin Fritschi  56 Manuela Gago-Dominguez  57 Aleksandra Gentry-Maharaj  58   59 Anna González-Neira  60   61 Pascal Guénel  62 Eric Hahnen  63   64 Christopher A Haiman  65 Ute Hamann  66 Jaana M Hartikainen  67   68 Vikki Ho  69 James Hodge  18 Antoinette Hollestelle  70 Ellen Honisch  71 Maartje J Hooning  70 Reiner Hoppe  25   72 John L Hopper  73 Sacha Howell  74   75   76 Anthony Howell  77 ABCTB InvestigatorskConFab InvestigatorsSimona Jakovchevska  78 Anna Jakubowska  16   79 Helena Jernström  10 Nichola Johnson  54 Rudolf Kaaks  12 Elza K Khusnutdinova  13   80 Cari M Kitahara  81 Stella Koutros  3 Vessela N Kristensen  82   83 James V Lacey  84   85 Diether Lambrechts  86   87 Flavio Lejbkowicz  88 Annika Lindblom  89   90 Michael Lush  2 Arto Mannermaa  68   91   92 Dimitrios Mavroudis  93 Usha Menon  58 Rachel A Murphy  94   95 Heli Nevanlinna  96 Nadia Obi  97   98 Kenneth Offit  99   100 Tjoung-Won Park-Simon  20 Alpa V Patel  18 Cheng Peng  47 Paolo Peterlongo  101 Guillermo Pita  60 Dijana Plaseska-Karanfilska  78 Katri Pylkäs  102   103 Paolo Radice  104 Muhammad U Rashid  66   105 Gad Rennert  106 Eleanor Roberts  74 Juan Rodriguez  41 Atocha Romero  107 Efraim H Rosenberg  108 Emmanouil Saloustros  109 Dale P Sandler  110 Elinor J Sawyer  111 Rita K Schmutzler  63   64   112 Christopher G Scott  17 Xiao-Ou Shu  113 Melissa C Southey  114   115   116 Jennifer Stone  73   117 Jack A Taylor  110   118 Lauren R Teras  18 Irma van de Beek  119 Walter Willett  24   47   48 Robert Winqvist  102   103 Wei Zheng  113 Celine M Vachon  120 Marjanka K Schmidt  121   122   123 Per Hall  41   124 Robert J MacInnis  73   116 Roger L Milne  73   114   116 Paul D P Pharoah  125 Jacques Simard  126 Antonis C Antoniou  2 Douglas F Easton  2   45 Kyriaki Michailidou  1   2
Affiliations

Differences in polygenic score distributions in European ancestry populations: implications for breast cancer risk prediction

Kristia Yiangou et al. medRxiv. .

Update in

  • Polygenic score distribution differences across European ancestry populations: implications for breast cancer risk prediction.
    Yiangou K, Mavaddat N, Dennis J, Zanti M, Wang Q, Bolla MK, Abubakar M, Ahearn TU, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Aronson KJ, Augustinsson A, Baten A, Behrens S, Bermisheva M, Berrington de Gonzalez A, Białkowska K, Boddicker N, Bodelon C, Bogdanova NV, Bojesen SE, Brantley KD, Brauch H, Brenner H, Camp NJ, Canzian F, Castelao JE, Cessna MH, Chang-Claude J, Chenevix-Trench G, Chung WK; NBCS Collaborators; Colonna SV, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Devilee P, Dörk T, Dunning AM, Eccles DM, Eliassen AH, Engel C, Eriksson M, Evans DG, Fasching PA, Fletcher O, Flyger H, Fritschi L, Gago-Dominguez M, Gentry-Maharaj A, González-Neira A, Guénel P, Hahnen E, Haiman CA, Hamann U, Hartikainen JM, Ho V, Hodge J, Hollestelle A, Honisch E, Hooning MJ, Hoppe R, Hopper JL, Howell S, Howell A; ABCTB Investigators; kConFab Investigators; Jakovchevska S, Jakubowska A, Jernström H, Johnson N, Kaaks R, Khusnutdinova EK, Kitahara CM, Koutros S, Kristensen VN, Lacey JV, Lambrechts D, Lejbkowicz F, Lindblom A, Lush M, Mannermaa A, Mavroudis D, Menon U, Murphy RA, Nevanlinna H, Obi N, Offit K, Park-Simon TW, Patel AV, Peng C, Peterlongo P, Pita G, Plaseska-Karanfilska… See abstract for full author list ➔ Yiangou K, et al. Breast Cancer Res. 2024 Dec 29;26(1):189. doi: 10.1186/s13058-024-01947-x. Breast Cancer Res. 2024. PMID: 39734228 Free PMC article.

Abstract

The 313-variant polygenic risk score (PRS313) provides a promising tool for breast cancer risk prediction. However, evaluation of the PRS313 across different European populations which could influence risk estimation has not been performed. Here, we explored the distribution of PRS313 across European populations using genotype data from 94,072 females without breast cancer, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 225,105 female participants from the UK Biobank. The mean PRS313 differed markedly across European countries, being highest in south-eastern Europe and lowest in north-western Europe. Using the overall European PRS313 distribution to categorise individuals leads to overestimation and underestimation of risk in some individuals from south-eastern and north-western countries, respectively. Adjustment for principal components explained most of the observed heterogeneity in mean PRS. Country-specific PRS distributions may be used to calibrate risk categories in individuals from different countries.

PubMed Disclaimer

Figures

Figure 1:
Figure 1:
Map of the European countries of origin of BCAC study participants included in the analysis. Countries were coloured based on their mean standardized PRS313 in control dataset of BCAC. Countries with higher mean are represented with darker colour while those with lower mean with lighter colour.
Figure 2:
Figure 2:
Distribution of the standardized PRS313 across country of origin for overall, ER-positive and ER-negative breast cancer in control dataset of BCAC. The squares represent the mean PRS by country and the error bars represent the corresponding 95% confidence intervals (FE Model: Fixed effect Model).
Figure 3:
Figure 3:
Distribution of the mean PRS306, and “standard” PRS for breast cancer, as defined in the UK Biobank, across countries of origin of participating white females. The squares represent the mean PRS by country and the error bars represent the corresponding 95% confidence intervals (FE Model: Fixed effect Model).
Figure 4:
Figure 4:
PRS313 distribution in controls by percentiles in the pooled BCAC dataset, Greece, Ireland and Italy. The dashed line corresponds to the 95th percentile of the PRS313 distribution in controls of the pooled BCAC dataset.
Figure 5:
Figure 5:
Classification of a 50-year-old woman from Greece when her raw PRS313, which is equal to 0.34 is standardized based on the mean and SD of the controls of BOADICEA model (upper panel) and Greece (lower panel), using the CanRisk tool. Plots were generated using the CanRisk tool (www.canrisk.org).
Figure 6:
Figure 6:
Classification of a 50-year-old woman from Ireland when her raw PRS313, which is equal to 0.27 is standardized based on the mean and SD of the controls BOADICEA (upper panel) model and Ireland (lower panel), using the CanRisk tool. Plots were generated using the CanRisk tool (www.canrisk.org).

References

    1. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature genetics. 2013;45(4):353–61. - PMC - PubMed
    1. Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature genetics. 2015;47(4):373–80. - PMC - PubMed
    1. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–4. - PMC - PubMed
    1. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature genetics. 2020;52(6):572–81. - PMC - PubMed
    1. Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, Wahlström C, et al. Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women. The New England journal of medicine. 2021;384(5):428–39. - PMC - PubMed

Publication types