Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Dec;76(6):2312-6.
doi: 10.1172/JCI112241.

1,25-Dihydroxyvitamin D increases calmodulin binding to specific proteins in the chick duodenal brush border membrane

1,25-Dihydroxyvitamin D increases calmodulin binding to specific proteins in the chick duodenal brush border membrane

D D Bikle et al. J Clin Invest. 1985 Dec.

Abstract

In previous studies we demonstrated that the biologically active vitamin D metabolite 1,25-dihydroxyvitamin D [1,25(OH)2D] increased the calmodulin (CaM) content of chick duodenal brush border membranes (BBM) without increasing the total cellular CaM content. Therefore, we evaluated the binding of CaM to discrete proteins in the BBM and determined whether 1,25(OH)2D could influence such binding. We observed one major and several minor CaM-binding bands on autoradiograms of sodium dodecyl sulfate polyacrylamide gels incubated with [125I]CaM. The major band had a molecular weight of 102,000-105,000. It bound CaM even in the presence of EGTA, but not in the presence of trifluoperazine or excess nonradioactive CaM. The administration of 1,25(OH)2D increased the apparent binding of CaM to this protein as assessed by densitometry of the autoradiogram. This increase in CaM binding coincided with the increased ability of the same BBM vesicles to accumulate calcium. Cycloheximide in doses that markedly reduced the incorporation of [35S]methionine into BBM proteins did not reduce the ability of 1,25-dihydroxyvitamin D3 to stimulate either calcium uptake by the BBM vesicles or CaM binding to the 102,000-105,000-mol-wt protein. These results suggest that 1,25(OH)2D administration increases the CaM content of duodenal BBM by increasing the ability of a 102,000-105,000-mol-wt protein to bind CaM. This mechanism may underlie the ability of 1,25(OH)2D to stimulate calcium movement across the intestinal BBM.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1979 Apr 25;254(8):2993-9 - PubMed
    1. J Biol Chem. 1980 Nov 25;255(22):10551-4 - PubMed
    1. Br J Nutr. 1961;15:131-47 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1134-8 - PubMed

Publication types