Extended Enrichment for Ultrasensitive Detection of Low-Frequency Mutations by Long Blocker Displacement Amplification
- PMID: 38416545
- DOI: 10.1002/anie.202400551
Extended Enrichment for Ultrasensitive Detection of Low-Frequency Mutations by Long Blocker Displacement Amplification
Abstract
Detecting low-frequency DNA mutations hotspots cluster is critical for cancer diagnosis but remains challenging. Quantitative PCR (qPCR) is constrained by sensitivity, and allele-specific PCR is restricted by throughput. Here we develop a long blocker displacement amplification (LBDA) coupled with qPCR for ultrasensitive and multiplexed variants detection. By designing long blocker oligos to perfectly match wildtype sequences while mispairing with mutants, long blockers enable 14-44 nt enrichment regions which is 2-fold longer than normal BDA in the experiments. For wild template with a specific nucleotide, LBDA can detect different mutation types down to 0.5 % variant allele frequency (VAF) in one reaction, with median enrichment fold of 1,000 on 21 mutant DNA templates compared to the wild type. We applied LBDA-qPCR to detect KRAS and NRAS mutation hotspots, utilizing a single plex assay capable of covering 81 mutations and tested in synthetic templates and colorectal cancer tissue samples. Moreover, the mutation types were verified through Sanger sequencing, demonstrating concordance with results obtained from next generation sequencing. Overall, LBDA-qPCR provides a simple yet ultrasensitive approach for multiplexed detection of low VAF mutations hotspots, presenting a powerful tool for cancer diagnosis and monitoring.
Keywords: colorectal cancer; long blocker displacement amplification; mutation hotspots; tumor heterogeneity.
© 2024 Wiley‐VCH GmbH.
Similar articles
-
Analysis of Colorectal Cancer Gene Mutations and Application of Long Blocker Displacement Amplification Technology for High-Throughput Mutation Detection.Biosensors (Basel). 2025 May 12;15(5):308. doi: 10.3390/bios15050308. Biosensors (Basel). 2025. PMID: 40422048 Free PMC article.
-
Accurate detection of KRAS, NRAS and BRAF mutations in metastatic colorectal cancers by bridged nucleic acid-clamp real-time PCR.BMC Med Genomics. 2019 Nov 11;12(1):162. doi: 10.1186/s12920-019-0610-8. BMC Med Genomics. 2019. PMID: 31711486 Free PMC article.
-
Performance characteristics of next-generation sequencing in clinical mutation detection of colorectal cancers.Mod Pathol. 2015 Oct;28(10):1390-9. doi: 10.1038/modpathol.2015.86. Epub 2015 Jul 31. Mod Pathol. 2015. PMID: 26226847 Free PMC article.
-
Molecular diagnosis in type I epithelial ovarian cancer.Ginekol Pol. 2017;88(12):692-697. doi: 10.5603/GP.a2017.0123. Ginekol Pol. 2017. PMID: 29303228 Review.
-
The Coexistence of RAS and BRAF Mutations in Metastatic Colorectal Cancer: A Case Report and Systematic Literature Review.J Gastrointestin Liver Dis. 2020 Jun 3;29(2):251-256. doi: 10.15403/jgld-1003. J Gastrointestin Liver Dis. 2020. PMID: 32530992
Cited by
-
Analysis of Colorectal Cancer Gene Mutations and Application of Long Blocker Displacement Amplification Technology for High-Throughput Mutation Detection.Biosensors (Basel). 2025 May 12;15(5):308. doi: 10.3390/bios15050308. Biosensors (Basel). 2025. PMID: 40422048 Free PMC article.
-
Design of mismatch closure for enhanced specificity in DNA strand displacement reactions.Nucleic Acids Res. 2025 Jul 8;53(13):gkaf660. doi: 10.1093/nar/gkaf660. Nucleic Acids Res. 2025. PMID: 40650970 Free PMC article.
-
Reaction Pathway Differentiation Enabled Fingerprinting Signal for Single Nucleotide Variant Detection.Adv Sci (Weinh). 2025 Mar;12(12):e2412680. doi: 10.1002/advs.202412680. Epub 2025 Feb 4. Adv Sci (Weinh). 2025. PMID: 39903775 Free PMC article.
References
-
- M. R. Stratton, P. J. Campbell, P. A. Futreal, Nature 2009, 458, 719–724.
-
- B. Weir, X. Zhao, M. Meyerson, Cancer Cell 2004, 6, 433–438.
-
- N. Tanaka, S. Kanatani, R. Tomer, C. Sahlgren, P. Kronqvist, D. Kaczynska, L. Louhivuori, L. Kis, C. Lindh, P. Mitura, A. Stepulak, S. Corvigno, J. Hartman, P. Micke, A. Mezheyeuski, C. Strell, J. W. Carlson, C. Fernández Moro, H. Dahlstrand, A. Östman, K. Matsumoto, P. Wiklund, M. Oya, A. Miyakawa, K. Deisseroth, P. Uhlén, Nat. Biomed. Eng. 2017, 1, 796–806.
-
- D. W. Cescon, S. V. Bratman, S. M. Chan, L. L. Siu, Nat. Can. 2020, 1, 276–290.
-
- L. S. Schwartzberg, H. Horinouchi, D. Chan, S. Chernilo, M. L. Tsai, D. Isla, C. Escriu, J. P. Bennett, K. Clark-Langone, C. Svedman, P. Tomasini, G. Alexander, F. L. Baehner, T. Bauer, A. Bergamaschi, J. Crown, D. Davison, D. A. Eberhard, N. Gabrail, J. Han, W. Irvin, M. Lopatin, J. Orsini, B. T. Sumrall, npj Precis. Oncol. 2020, 4, 15.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous