IRF3 activates RB to authorize cGAS-STING-induced senescence and mitigate liver fibrosis
- PMID: 38416816
- PMCID: PMC10901380
- DOI: 10.1126/sciadv.adj2102
IRF3 activates RB to authorize cGAS-STING-induced senescence and mitigate liver fibrosis
Abstract
Cytosolic double-stranded DNA surveillance by cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) signaling triggers cellular senescence, autophagy, biased mRNA translation, and interferon-mediated immune responses. However, detailed mechanisms and physiological relevance of STING-induced senescence are not fully understood. Here, we unexpectedly found that interferon regulatory factor 3 (IRF3), activated during innate DNA sensing, forms substantial endogenous complexes in the nucleus with retinoblastoma (RB), a key cell cycle regulator. The IRF3-RB interaction attenuates cyclin-dependent kinase 4/6 (CDK4/6)-mediated RB hyperphosphorylation that mobilizes RB to deactivate E2 family (E2F) transcription factors, thereby driving cells into senescence. STING-IRF3-RB signaling plays a notable role in hepatic stellate cells (HSCs) within various murine models, pushing activated HSCs toward senescence. Accordingly, IRF3 global knockout or conditional deletion in HSCs aggravated liver fibrosis, a process mitigated by the CDK4/6 inhibitor. These findings underscore a straightforward yet vital mechanism of cGAS-STING signaling in inducing cellular senescence and unveil its unexpected biology in limiting liver fibrosis.
Figures







References
-
- Gorgoulis V., Adams P. D., Alimonti A., Bennett D. C., Bischof O., Bishop C., Campisi J., Collado M., Evangelou K., Ferbeyre G., Gil J., Hara E., Krizhanovsky V., Jurk D., Maier A. B., Narita M., Niedernhofer L., Passos J. F., Robbins P. D., Schmitt C. A., Sedivy J., Vougas K., von Zglinicki T., Zhou D., Serrano M., Demaria M., Cellular senescence: Defining a path forward. Cell 179, 813–827 (2019). - PubMed
-
- Campisi J., Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell 120, 513–522 (2005). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials