Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Apr:173:111393.
doi: 10.1016/j.ejrad.2024.111393. Epub 2024 Feb 23.

Artificial intelligence and explanation: How, why, and when to explain black boxes

Affiliations
Review

Artificial intelligence and explanation: How, why, and when to explain black boxes

Eric Marcus et al. Eur J Radiol. 2024 Apr.

Abstract

Artificial intelligence (AI) is infiltrating nearly all fields of science by storm. One notorious property that AI algorithms bring is their so-called black box character. In particular, they are said to be inherently unexplainable algorithms. Of course, such characteristics would pose a problem for the medical world, including radiology. The patient journey is filled with explanations along the way, from diagnoses to treatment, follow-up, and more. If we were to replace part of these steps with non-explanatory algorithms, we could lose grip on vital aspects such as finding mistakes, patient trust, and even the creation of new knowledge. In this article, we argue that, even for the darkest of black boxes, there is hope of understanding them. In particular, we compare the situation of understanding black box models to that of understanding the laws of nature in physics. In the case of physics, we are given a 'black box' law of nature, about which there is no upfront explanation. However, as current physical theories show, we can learn plenty about them. During this discussion, we present the process by which we make such explanations and the human role therein, keeping a solid focus on radiological AI situations. We will outline the AI developers' roles in this process, but also the critical role fulfilled by the practitioners, the radiologists, in providing a healthy system of continuous improvement of AI models. Furthermore, we explore the role of the explainable AI (XAI) research program in the broader context we describe.

Keywords: Black Box; Explainability; Explainable AI; Radiology.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources