Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 May 15:249:118568.
doi: 10.1016/j.envres.2024.118568. Epub 2024 Feb 28.

Towards development of functional climate-driven early warning systems for climate-sensitive infectious diseases: Statistical models and recommendations

Affiliations
Free article
Review

Towards development of functional climate-driven early warning systems for climate-sensitive infectious diseases: Statistical models and recommendations

Shovanur Haque et al. Environ Res. .
Free article

Abstract

Climate, weather and environmental change have significantly influenced patterns of infectious disease transmission, necessitating the development of early warning systems to anticipate potential impacts and respond in a timely and effective way. Statistical modelling plays a pivotal role in understanding the intricate relationships between climatic factors and infectious disease transmission. For example, time series regression modelling and spatial cluster analysis have been employed to identify risk factors and predict spatial and temporal patterns of infectious diseases. Recently advanced spatio-temporal models and machine learning offer an increasingly robust framework for modelling uncertainty, which is essential in climate-driven disease surveillance due to the dynamic and multifaceted nature of the data. Moreover, Artificial Intelligence (AI) techniques, including deep learning and neural networks, excel in capturing intricate patterns and hidden relationships within climate and environmental data sets. Web-based data has emerged as a powerful complement to other datasets encompassing climate variables and disease occurrences. However, given the complexity and non-linearity of climate-disease interactions, advanced techniques are required to integrate and analyse these diverse data to obtain more accurate predictions of impending outbreaks, epidemics or pandemics. This article presents an overview of an approach to creating climate-driven early warning systems with a focus on statistical model suitability and selection, along with recommendations for utilizing spatio-temporal and machine learning techniques. By addressing the limitations and embracing the recommendations for future research, we could enhance preparedness and response strategies, ultimately contributing to the safeguarding of public health in the face of evolving climate challenges.

Keywords: Climate; Early warning; Infectious diseases; Machine learning; Spatio-temporal; Statistical model.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types