Flat‐Knit, Flexible, Textile Metasurfaces
- PMID: 38419481
- DOI: 10.1002/adma.202312087
Flat‐Knit, Flexible, Textile Metasurfaces
Abstract
Lightweight, low-cost metasurfaces and reflectarrays that are easy to stow and deploy are desirable for many terrestrial and space-based communications and sensing applications. This work demonstrates a lightweight, flexible metasurface platform based on flat-knit textiles operating in the cm-wave spectral range. By using a colorwork knitting approach called float-jacquard knitting to directly integrate an array of resonant metallic antennas into a textile, two textile reflectarray devices, a metasurface lens (metalens), and a vortex-beam generator are realized. Operating as a receiving antenna, the metalens focuses a collimated normal-incidence beam to a diffraction-limited, off-broadside focal spot. Operating as a transmitting antenna, the metalens converts the divergent emission from a horn antenna into a collimated beam with peak measured directivity, gain, and efficiency of 21.30, 15.30, and -6.00 dB (25.12%), respectively. The vortex-beam generating metasurface produces a focused vortex beam with a topological charge of m = 1 over a wide frequency range of 4.1-5.8 GHz. Strong specular reflection is observed for the textile reflectarrays, caused by wavy yarn floats on the backside of the float-jacquard textiles. This work demonstrates a novel approach for the scalable production of flexible metasurfaces by leveraging commercially available yarns and well-established knitting machinery and techniques.
Keywords: flexible antennas; metasurfaces; radio frequency; reflectarrays; textiles.
© 2024 Wiley‐VCH GmbH.
Similar articles
-
Metasurface-based ultra-lightweight high-gain off-axis flat parabolic reflectarray for microwave beam collimation/focusing.Sci Rep. 2019 Dec 12;9(1):18984. doi: 10.1038/s41598-019-55221-8. Sci Rep. 2019. PMID: 31831798 Free PMC article.
-
Embroidered Textile Antennas: Influence of Moisture in Communication and Sensor Applications.Sensors (Basel). 2021 Jun 9;21(12):3988. doi: 10.3390/s21123988. Sensors (Basel). 2021. PMID: 34207771 Free PMC article.
-
Metasurface-based Fourier lens fed by compact plasmonic optical antennas for wide-angle beam steering.Opt Express. 2022 Jun 6;30(12):21918-21930. doi: 10.1364/OE.459553. Opt Express. 2022. PMID: 36224902
-
Analysis and Design of an X-Band Reflectarray Antenna for Remote Sensing Satellite System.Sensors (Basel). 2022 Feb 3;22(3):1166. doi: 10.3390/s22031166. Sensors (Basel). 2022. PMID: 35161909 Free PMC article.
-
Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.Acc Chem Res. 2018 Apr 17;51(4):850-859. doi: 10.1021/acs.accounts.7b00604. Epub 2018 Mar 9. Acc Chem Res. 2018. PMID: 29521501 Review.
Cited by
-
Inverse Design of Ultrathin Metamaterial Absorber.Nanomaterials (Basel). 2025 Jul 1;15(13):1024. doi: 10.3390/nano15131024. Nanomaterials (Basel). 2025. PMID: 40648731 Free PMC article.
-
Kirigami-Triggered Spoof Plasmonic Interconnects for Radiofrequency Elastronics.Research (Wash D C). 2024 May 1;7:0367. doi: 10.34133/research.0367. eCollection 2024. Research (Wash D C). 2024. PMID: 38694204 Free PMC article.
References
-
- D. Berry, R. Malech, W. Kennedy, IEEE Trans. Antennas Propag. 1963, 11, 645.
-
- J. Huang, in IEEE Antennas Propag. Soc. Int. Symp. 1991 Dig, 1991, vol. 2, London, ON, Canada, pp. 612–615.
-
- D. M. Pozar, S. D. Targonski, H. D. Syrigos, IEEE Trans. Antennas Propag. 1997, 45, 287.
-
- P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Opt. Lett. 1998, 23, 1081.
-
- N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.‐P. Tetienne, F. Capasso, Z. Gaburro, Science 2011, 334, 333.
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous