Advances in DTI studies for diagnoses and treatment of obsessive-compulsive disorder
- PMID: 38422871
- DOI: 10.1016/j.pscychresns.2024.111794
Advances in DTI studies for diagnoses and treatment of obsessive-compulsive disorder
Abstract
This review summarizes the current state of neuroimaging research on obsessive-compulsive disorder (OCD) using diffusion tensor imaging (DTI), which allows for the examination of white matter abnormalities in the brain. DTI studies on individuals with obsessive-compulsive disorder (OCD) consistently demonstrate widespread reductions in white matter integrity in various regions of the brain, including the corpus callosum, anterior and posterior cingulate cortex, and prefrontal cortex, which are involved in emotion regulation, decision-making, and cognitive control. However, the reviewed studies often have small sample sizes, and findings vary between studies, highlighting the need for larger and more standardized studies. Furthermore, discerning between causal and consequential effects of OCD on white matter integrity poses a challenge. Addressing this issue may be facilitated through longitudinal studies, including those evaluating the impact of treatment interventions, to enhance the accuracy of DTI data acquisition and processing, thereby improving the validity and comparability of study outcomes. In summary, DTI studies provide valuable insights into the neural circuits and connectivity disruptions in OCD, and future studies may benefit from standardized data analysis and larger sample sizes to determine whether structural abnormalities could be potential biomarkers for early identification and treatment of OCD.
Keywords: Brain circuits; Deep brain stimulation (DBS); Diffusion tensor imaging (DTI); Obsessive compulsive disorder (OCD); Tractography.
Copyright © 2024. Published by Elsevier B.V.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
