M-estimation for common epidemiological measures: introduction and applied examples
- PMID: 38423105
- PMCID: PMC10904145
- DOI: 10.1093/ije/dyae030
M-estimation for common epidemiological measures: introduction and applied examples
Abstract
M-estimation is a statistical procedure that is particularly advantageous for some comon epidemiological analyses, including approaches to estimate an adjusted marginal risk contrast (i.e. inverse probability weighting and g-computation) and data fusion. In such settings, maximum likelihood variance estimates are not consistent. Thus, epidemiologists often resort to bootstrap to estimate the variance. In contrast, M-estimation allows for consistent variance estimates in these settings without requiring the computational complexity of the bootstrap. In this paper, we introduce M-estimation and provide four illustrative examples of implementation along with software code in multiple languages. M-estimation is a flexible and computationally efficient estimation procedure that is a powerful addition to the epidemiologist's toolbox.
Keywords: M-estimation; data fusion; estimating equations; logistic regression; standardization.
© The Author(s) 2024; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Conflict of interest statement
None declared.
Similar articles
-
Leveraging auxiliary data to improve precision in inverse probability-weighted analyses.Ann Epidemiol. 2022 Oct;74:75-83. doi: 10.1016/j.annepidem.2022.07.011. Epub 2022 Aug 5. Ann Epidemiol. 2022. PMID: 35940394 Free PMC article.
-
Empirical Sandwich Variance Estimator for Iterated Conditional Expectation g-Computation.Stat Med. 2024 Dec 20;43(29):5562-5572. doi: 10.1002/sim.10255. Epub 2024 Nov 3. Stat Med. 2024. PMID: 39489722
-
Variance estimation in inverse probability weighted Cox models.Biometrics. 2021 Sep;77(3):1101-1117. doi: 10.1111/biom.13332. Epub 2020 Aug 3. Biometrics. 2021. PMID: 32662087
-
Matching Methods for Confounder Adjustment: An Addition to the Epidemiologist's Toolbox.Epidemiol Rev. 2022 Jan 14;43(1):118-129. doi: 10.1093/epirev/mxab003. Epidemiol Rev. 2022. PMID: 34109972 Free PMC article. Review.
-
Calibrating machine learning approaches for probability estimation: A comprehensive comparison.Stat Med. 2023 Dec 20;42(29):5451-5478. doi: 10.1002/sim.9921. Epub 2023 Oct 17. Stat Med. 2023. PMID: 37849356 Review.
Cited by
-
Keep asking: What do I want? What do I have? What do I do? : An approach for combining information to learn about a target population.Eur J Epidemiol. 2025 Mar;40(3):245-254. doi: 10.1007/s10654-025-01222-z. Epub 2025 May 28. Eur J Epidemiol. 2025. PMID: 40426000 No abstract available.
-
A minimal nontrivial example of higher-order evidence.Am J Epidemiol. 2025 Apr 8;194(4):886-888. doi: 10.1093/aje/kwae321. Am J Epidemiol. 2025. PMID: 39198907
-
Methods for Extending Inferences From Observational Studies: Considering Causal Structures, Identification Assumptions, and Estimators.Epidemiology. 2024 Nov 1;35(6):753-763. doi: 10.1097/EDE.0000000000001780. Epub 2024 Aug 9. Epidemiology. 2024. PMID: 39120938
-
Revisiting the Population Attributable Fraction.Epidemiology. 2025 Jul 1;36(4):482-486. doi: 10.1097/EDE.0000000000001867. Epub 2025 Apr 1. Epidemiology. 2025. PMID: 40167173
References
-
- Stefanski LA, Boos DD.. The calculus of M-estimation. Am Stat 2002;56:29–38.
-
- Hernán MA, Robins JM.. Causal Inference: What If. Boca Raton: Chapman & Hall/CRC, 2020.
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources