PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons
- PMID: 38424324
- PMCID: PMC11001582
- DOI: 10.1038/s41593-024-01589-4
PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons
Abstract
Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-β1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-β1 followed by COL6A1. Knockdown of TGF-β1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-β1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures

















Similar articles
-
RuvBL1/2 reduce toxic dipeptide repeat protein burden in multiple models of C9orf72-ALS/FTD.Life Sci Alliance. 2024 Dec 5;8(2):e202402757. doi: 10.26508/lsa.202402757. Print 2025 Feb. Life Sci Alliance. 2024. PMID: 39638345 Free PMC article.
-
C9orf72 ALS/FTD dipeptide repeat protein levels are reduced by small molecules that inhibit PKA or enhance protein degradation.EMBO J. 2022 Jan 4;41(1):e105026. doi: 10.15252/embj.2020105026. Epub 2021 Nov 18. EMBO J. 2022. PMID: 34791698 Free PMC article.
-
C9orf72-Associated Dipeptide Repeat Expansions Perturb ER-Golgi Vesicular Trafficking, Inducing Golgi Fragmentation and ER Stress, in ALS/FTD.Mol Neurobiol. 2024 Dec;61(12):10318-10338. doi: 10.1007/s12035-024-04187-4. Epub 2024 May 9. Mol Neurobiol. 2024. PMID: 38722513 Free PMC article.
-
Insights into C9ORF72-Related ALS/FTD from Drosophila and iPSC Models.Trends Neurosci. 2018 Jul;41(7):457-469. doi: 10.1016/j.tins.2018.04.002. Epub 2018 May 2. Trends Neurosci. 2018. PMID: 29729808 Free PMC article. Review.
-
C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.Autophagy. 2021 Nov;17(11):3306-3322. doi: 10.1080/15548627.2021.1872189. Epub 2021 Feb 26. Autophagy. 2021. PMID: 33632058 Free PMC article. Review.
Cited by
-
Amyotrophic lateral sclerosis caused by hexanucleotide repeat expansions in C9orf72: from genetics to therapeutics.Lancet Neurol. 2025 Mar;24(3):261-274. doi: 10.1016/S1474-4422(25)00026-2. Lancet Neurol. 2025. PMID: 39986312 Free PMC article. Review.
-
Poly-GR repeats associated with ALS/FTD gene C9ORF72 impair translation elongation and induce a ribotoxic stress response in neurons.Sci Signal. 2024 Aug 6;17(848):eadl1030. doi: 10.1126/scisignal.adl1030. Epub 2024 Aug 6. Sci Signal. 2024. PMID: 39106320 Free PMC article.
-
Mendelian randomization of plasma proteomics identifies novel ALS-associated proteins and their GO enrichment and KEGG pathway analyses.BMC Neurol. 2025 Mar 3;25(1):82. doi: 10.1186/s12883-025-04091-x. BMC Neurol. 2025. PMID: 40033250 Free PMC article.
-
Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis.Cells. 2024 May 21;13(11):888. doi: 10.3390/cells13110888. Cells. 2024. PMID: 38891021 Free PMC article. Review.
-
Amyotrophic Lateral Sclerosis and Parkinson's Disease: Brain Tissue Transcriptome Analysis Reveals Interactions.Mol Neurobiol. 2025 May;62(5):6383-6396. doi: 10.1007/s12035-024-04681-9. Epub 2025 Jan 10. Mol Neurobiol. 2025. PMID: 39792201 Review.
References
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous