Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May 15:313:124093.
doi: 10.1016/j.saa.2024.124093. Epub 2024 Feb 28.

Exploring Pyrimidine-Based azo Dyes: Vibrational spectroscopic Assignments, TD-DFT Investigation, chemical Reactivity, HOMO-LUMO, ELF, LOL and NCI-RDG analysis

Affiliations

Exploring Pyrimidine-Based azo Dyes: Vibrational spectroscopic Assignments, TD-DFT Investigation, chemical Reactivity, HOMO-LUMO, ELF, LOL and NCI-RDG analysis

Ahlam Roufieda Guerroudj et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

Theoretical computations of pyrimidine-based azo dyes were performed by the DFT approach using the B3LYP/6 - 31G(d,p) basis set. The molecules were optimized based on the same basis set by calculating the minimum energy. FMOs, DOS and GCRD were computed for kinetic stability and chemical reactivity of the selected compounds. The MEP surface was studied to locate nucleophilic and electrophilic attack zones. The energy gap was carefully studied for pyrimidine-based azo dyes. Vibrational spectroscopy was studied in the most prominent regions with respect to PED assignments. Similarly, the UV-Vis absorption technique was calculated using the TD-DFT approach in different solvent media. The electronic structure of each atom in a molecule was examined via the electron localization function (ELF) and localized orbital locator (LOL). Non-covalent interactions were explored using reduced density gradient analysis. The combination of experimental and theoretical data allowed us to correlate the structural modifications with the observed photophysical properties, facilitating the design of azo dyes with tailored characteristics. This work contributes to the fundamental understanding of azo dyes and offers a foundation for the development of new materials with enhanced photophysical and electronic properties.

Keywords: DFT; ELF; LOL; NCI-RDG; PED; Pyrimidine-based azo dyes.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources