The hydrophobic cluster on the surface of protein is the key structural basis for the SDS-resistance of chondroitinase VhChlABC
- PMID: 38433971
- PMCID: PMC10902247
- DOI: 10.1007/s42995-023-00201-1
The hydrophobic cluster on the surface of protein is the key structural basis for the SDS-resistance of chondroitinase VhChlABC
Abstract
The application of chondroitinase requires consideration of the complex microenvironment of the target. Our previous research reported a marine-derived sodium dodecyl sulfate (SDS)-resistant chondroitinase VhChlABC. This study further investigated the mechanism of VhChlABC resistance to SDS. Focusing on the hydrophobic cluster on its strong hydrophilic surface, it was found that the reduction of hydrophobicity of surface residues Ala181, Met182, Met183, Ala184, Val185, and Ile305 significantly reduced the SDS resistance and stability. Molecular dynamics (MD) simulation and molecular docking analysis showed that I305G had more conformational flexibility around residue 305 than wild type (WT), which was more conducive to SDS insertion and binding. The affinity of A181G, M182A, M183A, V185A and I305G to SDS was significantly higher than that of WT. In conclusion, the surface hydrophobic microenvironment composed of six residues was the structural basis for SDS resistance. This feature could prevent the binding of SDS and the destruction of hydrophobic packaging by increasing the rigid conformation of protein and reducing the binding force of SDS-protein. The study provides a new idea for the rational design of SDS-resistant proteins and may further promote chondroitinase research in the targeted therapy of lung diseases under the pressure of pulmonary surfactant.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00201-1.
Keywords: Chondroitinase; Hydrophobic cluster; Protein surface; SDS-resistance.
© Ocean University of China 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Conflict of interest statement
Conflict of interestAll authors declare no conflicts of interests. Author Wengong Yu is one of the Editorial Board Members, but he was not involved in the journal’s review of, or decision related to, this manuscript.
Figures






References
-
- Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. - DOI
-
- Agiba AM, Nasr M, Abdel-Hamid S, Eldin AB, Geneidi AS. Enhancing the intestinal permeation of the chondroprotective nutraceuticals glucosamine sulphate and chondroitin sulphate using conventional and modified liposomes. Curr Drug Deliv. 2018;15:907–916. doi: 10.2174/1567201815666180123100148. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous