Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 14;128(10):1871-1879.
doi: 10.1021/acs.jpca.4c00001. Epub 2024 Mar 5.

N-H and N-C Bond Dissociation Pathways in Ultraviolet Photodissociation of Dimethylamine

Affiliations

N-H and N-C Bond Dissociation Pathways in Ultraviolet Photodissociation of Dimethylamine

Peerapat Wangchingchai et al. J Phys Chem A. .

Abstract

We investigated the interlinked N-H and N-C photochemistry of primary and secondary amines via the state-resolved detection of vibrationally excited CH3 product and H atom product by 200-235 nm dimethylamine photodissociation using resonance-enhanced multiphoton ionization (REMPI) and velocity map imaging (VMI) techniques. The out-of-plane bending (ν2) vibrationally excited CH3 showed a bimodal translational energy distribution that became unimodal with a near-zero product yield at longer photolysis wavelengths (λphotolysis). In contrast, a unimodal distribution was observed for the C-H stretching (νCH) vibrationally excited CH3 products with an almost constant product yield in the examined λphotolysis region. We ascribed the state-specific energy releases of the CH3 products to two reaction pathways based on calculations of the potential energy surface (PES): the direct N-CH3 dissociation pathway and the indirect N-CH3 dissociation pathway via the N-H bond conical intersection. Meanwhile, the H atom product showed a bimodal energy distribution similar to the ammonia photodissociation model, with an excited-state counterproduct channel that became accessible at a shorter λphotolysis. These results suggest that the N-H and N-C bond dissociations are connected, and these dissociations cause different photochemistry between primary/secondary amines and tertiary amines.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources