An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 1 Foundational Knowledge
- PMID: 38445497
- DOI: 10.1177/08465371241236376
An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 1 Foundational Knowledge
Abstract
Artificial intelligence (AI) is rapidly evolving and has transformative potential for interventional radiology (IR) clinical practice. However, formal training in AI may be limited for many clinicians and therefore presents a challenge for initial implementation and trust in AI. An understanding of the foundational concepts in AI may help familiarize the interventional radiologist with the field of AI, thus facilitating understanding and participation in the development and deployment of AI. A pragmatic classification system of AI based on the complexity of the model may guide clinicians in the assessment of AI. Finally, the current state of AI in IR and the patterns of implementation are explored (pre-procedural, intra-procedural, and post-procedural).
Keywords: artificial intelligence; harm-reduction; interventional radiology; safety.
Conflict of interest statement
Declaration of Conflicting InterestsThe author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Alexander Bilbily reports a relationship with 16 Bit Inc. that includes employment and equity or stocks. Alexander Bilbily is Co-CEO of 16 Bit Inc.
Similar articles
-
An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 2: Implementation Considerations and Harms.Can Assoc Radiol J. 2024 Aug;75(3):568-574. doi: 10.1177/08465371241236377. Epub 2024 Mar 6. Can Assoc Radiol J. 2024. PMID: 38445517 Review.
-
Artificial intelligence in interventional radiology: state of the art.Eur Radiol Exp. 2024 May 2;8(1):62. doi: 10.1186/s41747-024-00452-2. Eur Radiol Exp. 2024. PMID: 38693468 Free PMC article. Review.
-
Prime Time for Artificial Intelligence in Interventional Radiology.Cardiovasc Intervent Radiol. 2022 Mar;45(3):283-289. doi: 10.1007/s00270-021-03044-4. Epub 2022 Jan 14. Cardiovasc Intervent Radiol. 2022. PMID: 35031822 Free PMC article. Review.
-
IR-GPT: AI Foundation Models to Optimize Interventional Radiology.Cardiovasc Intervent Radiol. 2025 May;48(5):585-592. doi: 10.1007/s00270-024-03945-0. Epub 2025 Mar 26. Cardiovasc Intervent Radiol. 2025. PMID: 40140092 Free PMC article. Review.
-
Interventional Radiology ex-machina: impact of Artificial Intelligence on practice.Radiol Med. 2021 Jul;126(7):998-1006. doi: 10.1007/s11547-021-01351-x. Epub 2021 Apr 16. Radiol Med. 2021. PMID: 33861421 Free PMC article. Review.
Cited by
-
Artificial Intelligence in Neuroendovascular Procedures.J Neuroendovasc Ther. 2025;19(1):2024-0107. doi: 10.5797/jnet.ra.2024-0107. Epub 2025 Feb 27. J Neuroendovasc Ther. 2025. PMID: 40034100 Free PMC article. Review.
-
Exploring Interventional Radiology: A Multicentre Study on Saudi Medical and Radiology Technology Students' Perspectives.Adv Med Educ Pract. 2025 May 5;16:749-760. doi: 10.2147/AMEP.S514876. eCollection 2025. Adv Med Educ Pract. 2025. PMID: 40351775 Free PMC article.
-
AI and Interventional Radiology: A Narrative Review of Reviews on Opportunities, Challenges, and Future Directions.Diagnostics (Basel). 2025 Apr 1;15(7):893. doi: 10.3390/diagnostics15070893. Diagnostics (Basel). 2025. PMID: 40218243 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources