Synthesis, characterization, molecular modeling, binding energies of β-cyclodextrin-inclusion complexes of quercetin: Modification of photo physical behavior upon β-CD complexation
- PMID: 38447439
- DOI: 10.1016/j.saa.2024.124091
Synthesis, characterization, molecular modeling, binding energies of β-cyclodextrin-inclusion complexes of quercetin: Modification of photo physical behavior upon β-CD complexation
Abstract
We prepared a naturally occurring flavanoid namely quercetin from tea leaves and analyzed by Absorption, Emission, FT-IR, 1H, 13C nmr spectra and ESI-MS analysis. The inclusion behavior of quercetin in cyclodextrins like α-, β-, γ-, per-6-ABCD and mono-6-ABCD cavities were supported such as UV-vis., Emission, FT-IR and ICD spectra and energy minimization studies. From the absorption and emission results, the type of complexes formed were found to depend on stoichiometry of Host:Guest. FT-IR data of CD complexes of quercetin supported inclusion complex formation of the substrate with α-, β- and γ-CDs. The inclusion of host-guest complexation of quercetin with α-, β-, γ-CDs, per-6-ABCD and mono-6-ABCDs provides very valuable information about the CD:quercetin complexes, the study also shows that β-CD complexation improves water solubility, chemical stability and bioavailability of quercetin. Besides, phase solubility studies also supported the formation of 1:1 drug-CD soluble complexes. All these spectral results provide insight into the binding behavior of substrate into CD cavity in the order per-6-ABCD > Mono-6-ABCD > γ-CD > β-CD > α-CD. The proposed model also finds strong support from the fact with excess CD this exciton coupling disappears indicates the formation of only 1:1 complex.
Keywords: Binding energy; Host-Guest interaction; Inclusion complex; Molecular modeling; Phase solubility; Photo physical property; Quercetin; Secondary metabolites; Tea leaves; β-Cyclodextrin.
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
