Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 26;43(3):113918.
doi: 10.1016/j.celrep.2024.113918. Epub 2024 Mar 6.

Integration of Kupffer cells into human iPSC-derived liver organoids for modeling liver dysfunction in sepsis

Affiliations
Free article

Integration of Kupffer cells into human iPSC-derived liver organoids for modeling liver dysfunction in sepsis

Yang Li et al. Cell Rep. .
Free article

Abstract

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.

Keywords: CP: Stem cell research; EMP; Kupffer cells; TLR4; disease model; hematopoiesis; human iPSCs; liver inflammation; liver organoids; self-recovery; sepsis.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

References

Publication types