External validation and application of the Diabetes Population Risk Tool (DPoRT) for prediction of type 2 diabetes onset in the US population
- PMID: 38453237
- PMCID: PMC10921488
- DOI: 10.1136/bmjdrc-2023-003905
External validation and application of the Diabetes Population Risk Tool (DPoRT) for prediction of type 2 diabetes onset in the US population
Abstract
Introduction: Characterizing diabetes risk in the population is important for population health assessment and diabetes prevention planning. We aimed to externally validate an existing 10-year population risk model for type 2 diabetes in the USA and model the population benefit of diabetes prevention approaches using population survey data.
Research design and methods: The Diabetes Population Risk Tool (DPoRT), originally derived and validated in Canada, was applied to an external validation cohort of 23 477 adults from the 2009 National Health Interview Survey (NHIS). We assessed predictive performance for discrimination (C-statistic) and calibration plots against observed incident diabetes cases identified from the NHIS 2009-2018 cycles. We applied DPoRT to the 2018 NHIS cohort (n=21 187) to generate 10-year risk prediction estimates and characterize the preventive benefit of three diabetes prevention scenarios: (1) community-wide strategy; (2) high-risk strategy and (3) combined approach.
Results: DPoRT demonstrated good discrimination (C-statistic=0.778 (males); 0.787 (females)) and good calibration across the range of risk. We predicted a baseline risk of 10.2% and 21 076 000 new cases of diabetes in the USA from 2018 to 2028. The community-wide strategy and high-risk strategy estimated diabetes risk reductions of 0.2% and 0.3%, respectively. The combined approach estimated a 0.4% risk reduction and 843 000 diabetes cases averted in 10 years.
Conclusions: DPoRT has transportability for predicting population-level diabetes risk in the USA using routinely collected survey data. We demonstrate the model's applicability for population health assessment and diabetes prevention planning. Our modeling predicted that the combination of community-wide and targeted prevention approaches for those at highest risk are needed to reduce diabetes burden in the USA.
Keywords: diabetes mellitus, type 2; population health; risk assessment.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
Conflict of interest statement
Competing interests: None declared.
Figures



Similar articles
-
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.Clin Orthop Relat Res. 2024 Dec 1;482(12):2193-2208. doi: 10.1097/CORR.0000000000003185. Epub 2024 Jul 23. Clin Orthop Relat Res. 2024. PMID: 39051924
-
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?Clin Orthop Relat Res. 2024 Sep 1;482(9):1710-1721. doi: 10.1097/CORR.0000000000003030. Epub 2024 Mar 22. Clin Orthop Relat Res. 2024. PMID: 38517402 Free PMC article.
-
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.Clin Orthop Relat Res. 2024 Jan 1;482(1):143-157. doi: 10.1097/CORR.0000000000002706. Epub 2023 Jun 12. Clin Orthop Relat Res. 2024. PMID: 37306629 Free PMC article.
-
Prognostic models for radiation-induced complications after radiotherapy in head and neck cancer patients.Cochrane Database Syst Rev. 2025 Sep 10;9(9):CD014745. doi: 10.1002/14651858.CD014745.pub2. Cochrane Database Syst Rev. 2025. PMID: 40927975
-
A systematic review and individual patient data meta-analysis of prognostic factors for foot ulceration in people with diabetes: the international research collaboration for the prediction of diabetic foot ulcerations (PODUS).Health Technol Assess. 2015 Jul;19(57):1-210. doi: 10.3310/hta19570. Health Technol Assess. 2015. PMID: 26211920 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical