Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme
- PMID: 38455415
- PMCID: PMC10915327
- DOI: 10.62347/MKIV1986
Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme
Abstract
Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor burden and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a repressed tumor burden.
Keywords: Galectin-1; galectin inhibitors; glioblastoma; nanoparticles.
AJCR Copyright © 2024.
Conflict of interest statement
None.
Figures


References
-
- Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–996. - PubMed
-
- Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–722. - PubMed
-
- Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, Hau P, Kortmann RD, Krex D, Grauer O, Goldbrunner R, Schnell O, Bahr O, Uhl M, Seidel C, Tabatabai G, Kowalski T, Ringel F, Schmidt-Graf F, Suchorska B, Brehmer S, Weyerbrock A, Renovanz M, Bullinger L, Galldiks N, Vajkoczy P, Misch M, Vatter H, Stuplich M, Schafer N, Kebir S, Weller J, Schaub C, Stummer W, Tonn JC, Simon M, Keil VC, Nelles M, Urbach H, Coenen M, Wick W, Weller M, Fimmers R, Schmid M, Hattingen E, Pietsch T, Coch C, Glas M Neurooncology Working Group of the German Cancer Society. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet. 2019;393:678–688. - PubMed
-
- Batchelor TT, Won M, Chakravarti A, Hadjipanayis CG, Shi W, Ashby LS, Stieber VW, Robins HI, Gray HJ, Voloschin A, Fiveash JB, Robinson CG, Chamarthy U, Kwok Y, Cescon TP, Sharma AK, Chaudhary R, Polley MY, Mehta MP. NRG/RTOG 0837: randomized, phase II, double-blind, placebo-controlled trial of chemoradiation with or without cediranib in newly diagnosed glioblastoma. Neurooncol Adv. 2023;5:vdad116. - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous