Identification of Potential Inhibitors of the SARS-CoV-2 NSP13 Helicase via Structure-Based Ligand Design, Molecular Docking and Nonequilibrium Alchemical Simulations
- PMID: 38456332
- DOI: 10.1002/cmdc.202400095
Identification of Potential Inhibitors of the SARS-CoV-2 NSP13 Helicase via Structure-Based Ligand Design, Molecular Docking and Nonequilibrium Alchemical Simulations
Abstract
We have assembled a computational pipeline based on virtual screening, docking techniques, and nonequilibrium molecular dynamics simulations, with the goal of identifying possible inhibitors of the SARS-CoV-2 NSP13 helicase, catalyzing by ATP hydrolysis the unwinding of double or single-stranded RNA in the viral replication process inside the host cell. The druggable sites for broad-spectrum inhibitors are represented by the RNA binding sites at the 5' entrance and 3' exit of the central channel, a structural motif that is highly conserved across coronaviruses. Potential binders were first generated using structure-based ligand techniques. Their potency was estimated by using four popular docking scoring functions. Common docking hits for NSP13 were finally tested using advanced nonequilibrium alchemical techniques for binding free energy calculations on a high-performing parallel cluster. Four potential NSP13 inhibitors with potency from submicrimolar to nanomolar were finally identified.
Keywords: Helicase; NSP13 inhibition; SARS-CoV-2; binding free energy; drug design; molecular dynamics.
© 2024 Wiley-VCH GmbH.
Similar articles
-
Activity and inhibition of the SARS-CoV-2 Omicron nsp13 R392C variant using RNA duplex unwinding assays.SLAS Discov. 2024 Apr;29(3):100145. doi: 10.1016/j.slasd.2024.01.006. Epub 2024 Feb 1. SLAS Discov. 2024. PMID: 38301954 Free PMC article.
-
High throughput screening for SARS-CoV-2 helicase inhibitors.SLAS Discov. 2024 Sep;29(6):100180. doi: 10.1016/j.slasd.2024.100180. Epub 2024 Aug 22. SLAS Discov. 2024. PMID: 39173831
-
ATPase-dependent duplex nucleic acid unwinding by SARS-CoV-2 nsP13 relies on facile binding and translocation along single-stranded nucleic acid.J Biol Chem. 2025 Jul;301(7):110373. doi: 10.1016/j.jbc.2025.110373. Epub 2025 Jun 12. J Biol Chem. 2025. PMID: 40516869 Free PMC article.
-
AI-driven covalent drug design strategies targeting main protease (mpro) against SARS-CoV-2: structural insights and molecular mechanisms.J Biomol Struct Dyn. 2025 Jul;43(11):5436-5464. doi: 10.1080/07391102.2024.2308769. Epub 2024 Jan 29. J Biomol Struct Dyn. 2025. PMID: 38287509 Review.
-
Unveiling SARS-CoV-2's heart: role, structure and inhibition of SARS-CoV-2 RNA-dependent RNA polymerase.Antiviral Res. 2025 Aug;240:106208. doi: 10.1016/j.antiviral.2025.106208. Epub 2025 Jun 3. Antiviral Res. 2025. PMID: 40473220 Review.
Cited by
-
PDBrestore: A Free Web Interface for Processing and Fixing Protein Chains From Raw PDB Files.J Comput Chem. 2025 May 15;46(13):e70124. doi: 10.1002/jcc.70124. J Comput Chem. 2025. PMID: 40365838 Free PMC article.
-
Myricetin-bound crystal structure of the SARS-CoV-2 helicase NSP13 facilitates the discovery of novel natural inhibitors.Acta Crystallogr D Struct Biol. 2025 Jun 1;81(Pt 6):310-326. doi: 10.1107/S2059798325004498. Epub 2025 May 27. Acta Crystallogr D Struct Biol. 2025. PMID: 40421686 Free PMC article.
References
-
- F. Menegale, M. Manica, A. Zardini, G. Guzzetta, V. Marziano, V. d'Andrea, F. Trentini, M. Ajelli, P. Poletti, S. Merler, JAMA Network Open 2023, 6, e2310650–e2310650.
-
- Variants of the Virus. 2020; https://www.cdc.gov/coronavirus/2019-ncov/variants/, accessed November 13 2023.
-
- J. Chodera, A. A. Lee, N. London, F. von Delft, Nat. Chem. 2020.
-
- COVID Moonshot. 2020; https://postera.ai/covid, accessed November 13 2023.
-
- H. Lu, J. Li, P. Yang, F. Jiang, H. Liu, F. Cui, Front. Microbiol. 2022, 13.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous