Moving forward to understand the alteration of physiological mechanism by seed priming with different halo-agents under salt stress
- PMID: 38457044
- DOI: 10.1007/s11103-024-01425-0
Moving forward to understand the alteration of physiological mechanism by seed priming with different halo-agents under salt stress
Abstract
Soil salinity hampers the survival and productivity of crops. To minimize salt-associated damages in plant, better salt management practices in agriculture have become a prerequisite. Seed priming with different halo-agents is a technique, which improves the primed plant's endurance to tackle sodium. Salt tolerance is achieved in tolerant plants through fundamental physiological mechanisms- ion-exclusion and tissue tolerance, and salt-tolerant plants may (Na+ accumulators) or may not (Na+ excluders) allow sodium movement to leaves. While Na+ excluders depend on ion exclusion in roots, Na+ accumulators are proficient Na+ managers that can compartmentalize Na+ in leaves and use them beneficially as inexpensive osmoticum. Salt-sensitive plants are Na+ accumulators, but their inherent tissue tolerance ability and ion-exclusion process are insufficient for tolerance. Seed priming with different halo-agents aids in 'rewiring' of the salt tolerance mechanisms of plants. The resetting of the salt tolerance mechanism is not universal for every halo-agent and might vary with halo-agents. Here, we review the physiological mechanisms that different halo-agents target to confer enhanced salt tolerance in primed plants. Calcium and potassium-specific halo-agents trigger Na+ exclusion in roots, thus ensuring a low amount of Na+ in leaves. In contrast, Na+-specific priming agents favour processes for Na+ inclusion in leaves, improve plant tissue tolerance or vacuolar sequestration, and provide the greatest benefit to salt-sensitive and sodium accumulating plants. Overall, this review will help to understand the underlying mechanism behind plant's inherent nature towards salt management and its amelioration with different halo-agents, which helps to optimize crop stress performance.
Keywords: Glycophyte; Halophyte; Optimization of crop performance; Salinity; Sodium accumulator; Sodium excluder; Tissue tolerance.
© 2024. The Author(s), under exclusive licence to Springer Nature B.V.
References
-
- Abdolahpour M, Lofti R (2014) Seed priming affected physiology and grain yield. J Bio Env Sci 5(1):442–446
-
- Afzal I, Rauf S, Basra SMA, Murtaza G (2008) Halopriming improves vigor, metabolism of reserves and ionic contents in wheat seedlings under salt stress. Plant Soil Environ 54(9):382–388 - DOI
-
- Afzal I, Butt A, Ur Rehman H, Ahmad Basra AB, Afzal A (2012) Alleviation of salt stress in fine aromatic rice by seed priming. Aus J Crop Sci 6(10):1401–1407
-
- Afzal I, Basra SMA, Cheema MA, Farooq M, Jafar MZ, Shahid M, Yasmeen A (2013) Seed priming: a shotgun approach for alleviation of salt stress in wheat. Int J Agric Biol 15(6):1199–1203
-
- Agarie S, Shimoda T, Shimizu Y, Baumann K, Sunagawa H, Kondo A, Ueno O, Nakahara T, Nose A, Cushman JC (2007) Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J Exp Bot 58(8):1957–1967 - PubMed - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
