Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 8;10(10):eadk1992.
doi: 10.1126/sciadv.adk1992. Epub 2024 Mar 8.

A hybrid pathway for self-sustained luminescence

Affiliations

A hybrid pathway for self-sustained luminescence

Kseniia A Palkina et al. Sci Adv. .

Abstract

The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis-a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.. Fungal bioluminescence system with plant polyketide synthases.
(A) Caffeic acid cycle catalyzed by nnLuz, nnH3H, nnCPH, and nnHispS (with NpgA) from N. nambi or plant PKS (with 4CL). (B) Protein structures of nnHispS and a plant polyketide synthase (PpASCL), predicted by AlphaFold 2.0 (52). (C) Comparison of luminescence conferred by expression of plant PKS genes in various hosts and relative hispidin concentration in yeast. White space indicates enzymes not included in the corresponding experiment. AMP, adenosine 5′-monophosphate; ATP, adenosine 5′-triphosphate; NAD(P)+, nicotinamide adenine dinucleotide (phosphate); NAD(P)H, reduced form of NAD(P)+; ACP, acyl carrier protein; a.u., arbitrary units.
Fig. 2.
Fig. 2.. Transgenic N. benthamiana plants expressing different versions of the bioluminescence pathway.
(A) Average brightness of leaves, stems, and flowers in 9- to 10-week-old plants. (B) Photo of transgenic plants producing nnHispS, nnLuz, nnH3H, and nnCPH (line NB021). (C and D) Photo of transgenic lines NB221 (C) and NB220 (D) producing PpASCL, nnLuz, nnH3H, and nnCPH. (E) Photo of transgenic plants producing nnHispS, NpgA, nnLuz, nnH3H, and nnCPH (line NB2359). RLU, Relative Luminescence Units.

References

    1. Purtov K. V., Petushkov V. N., Baranov M. S., Mineev K. S., Rodionova N. S., Kaskova Z. M., Tsarkova A. S., Petunin A. I., Bondar V. S., Rodicheva E. K., Medvedeva S. E., Oba Y., Oba Y., Arseniev A. S., Lukyanov S., Gitelson J. I., Yampolsky I. V., The chemical basis of fungal bioluminescence. Angew. Chem. Int. Ed. Engl. 54, 8124–8128 (2015). - PubMed
    1. Kotlobay A. A., Sarkisyan K. S., Mokrushina Y. A., Marcet-Houben M., Serebrovskaya E. O., Markina N. M., Gonzalez Somermeyer L., Gorokhovatsky A. Y., Vvedensky A., Purtov K. V., Petushkov V. N., Rodionova N. S., Chepurnyh T. V., Fakhranurova L. I., Guglya E. B., Ziganshin R., Tsarkova A. S., Kaskova Z. M., Shender V., Abakumov M., Abakumova T. O., Povolotskaya I. S., Eroshkin F. M., Zaraisky A. G., Mishin A. S., Dolgov S. V., Mitiouchkina T. Y., Kopantzev E. P., Waldenmaier H. E., Oliveira A. G., Oba Y., Barsova E., Bogdanova E. A., Gabaldón T., Stevani C. V., Lukyanov S., Smirnov I. V., Gitelson J. I., Kondrashov F. A., Yampolsky I. V., Genetically encodable bioluminescent system from fungi. Proc. Natl. Acad. Sci. U.S.A. 115, 12728–12732 (2018). - PMC - PubMed
    1. Mitiouchkina T., Mishin A. S., Somermeyer L. G., Markina N. M., Chepurnyh T. V., Guglya E. B., Karataeva T. A., Palkina K. A., Shakhova E. S., Fakhranurova L. I., Chekova S. V., Tsarkova A. S., Golubev Y. V., Negrebetsky V. V., Dolgushin S. A., Shalaev P. V., Shlykov D., Melnik O. A., Shipunova V. O., Deyev S. M., Bubyrev A. I., Pushin A. S., Choob V. V., Dolgov S. V., Kondrashov F. A., Yampolsky I. V., Sarkisyan K. S., Plants with genetically encoded autoluminescence. Nat. Biotechnol. 38, 944–946 (2020). - PMC - PubMed
    1. Khakhar A., Starker C. G., Chamness J. C., Lee N., Stokke S., Wang C., Swanson R., Rizvi F., Imaizumi T., Voytas D. F., Building customizable auto-luminescent luciferase-based reporters in plants. Elife 9, e52786 (2020). - PMC - PubMed
    1. Liu S., Su Y., Lin M. Z., Ronald J. A., Brightening up biology: Advances in luciferase systems for in vivo imaging. ACS Chem. Biol. 16, 2707–2718 (2021). - PMC - PubMed

Publication types