Electrochemical DNA-based sensors for measuring cell-generated forces
- PMID: 38457863
- PMCID: PMC10947853
- DOI: 10.1016/j.bios.2024.116185
Electrochemical DNA-based sensors for measuring cell-generated forces
Abstract
Mechanical forces play an important role in cellular communication and signaling. We developed in this study novel electrochemical DNA-based force sensors for measuring cell-generated adhesion forces. Two types of DNA probes, i.e., tension gauge tether and DNA hairpin, were constructed on the surface of a smartphone-based electrochemical device to detect piconewton-scale cellular forces at tunable levels. Upon experiencing cellular tension, the unfolding of DNA probes induces the separation of redox reporters from the surface of the electrode, which results in detectable electrochemical signals. Using integrin-mediated cell adhesion as an example, our results indicated that these electrochemical sensors can be used for highly sensitive, robust, simple, and portable measurements of cell-generated forces.
Keywords: Cellular forces; DNA probe; Electrochemical sensor; Hairpin DNA; Tension gauge tether.
Copyright © 2024 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures





Update of
-
Electrochemical DNA-based sensors for measuring cell-generated forces.bioRxiv [Preprint]. 2023 Dec 5:2023.12.03.569814. doi: 10.1101/2023.12.03.569814. bioRxiv. 2023. Update in: Biosens Bioelectron. 2024 Jun 1;253:116185. doi: 10.1016/j.bios.2024.116185. PMID: 38106148 Free PMC article. Updated. Preprint.
Similar articles
-
A portable electrochemical DNA sensor for sensitive and tunable detection of piconewton-scale cellular forces.bioRxiv [Preprint]. 2024 Mar 27:2024.03.24.586508. doi: 10.1101/2024.03.24.586508. bioRxiv. 2024. Update in: Anal Chim Acta. 2025 Jan 2;1333:343392. doi: 10.1016/j.aca.2024.343392. PMID: 38585754 Free PMC article. Updated. Preprint.
-
A portable and sensitive DNA-based electrochemical sensor for detecting piconewton-scale cellular forces.Anal Chim Acta. 2025 Jan 2;1333:343392. doi: 10.1016/j.aca.2024.343392. Epub 2024 Nov 4. Anal Chim Acta. 2025. PMID: 39615910
-
Electrochemical DNA-based sensors for measuring cell-generated forces.bioRxiv [Preprint]. 2023 Dec 5:2023.12.03.569814. doi: 10.1101/2023.12.03.569814. bioRxiv. 2023. Update in: Biosens Bioelectron. 2024 Jun 1;253:116185. doi: 10.1016/j.bios.2024.116185. PMID: 38106148 Free PMC article. Updated. Preprint.
-
Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces.Mol Cells. 2022 Jan 31;45(1):26-32. doi: 10.14348/molcells.2022.2049. Mol Cells. 2022. PMID: 35114645 Free PMC article. Review.
-
Molecular Tension Probes for Imaging Forces at the Cell Surface.Acc Chem Res. 2017 Dec 19;50(12):2915-2924. doi: 10.1021/acs.accounts.7b00305. Epub 2017 Nov 21. Acc Chem Res. 2017. PMID: 29160067 Free PMC article. Review.
Cited by
-
Mechanical Forces, Nucleus, Chromosomes, and Chromatin.Biomolecules. 2025 Mar 1;15(3):354. doi: 10.3390/biom15030354. Biomolecules. 2025. PMID: 40149890 Free PMC article. Review.
-
Molecular Force Sensors for Biological Application.Int J Mol Sci. 2024 Jun 4;25(11):6198. doi: 10.3390/ijms25116198. Int J Mol Sci. 2024. PMID: 38892386 Free PMC article. Review.
-
A portable electrochemical DNA sensor for sensitive and tunable detection of piconewton-scale cellular forces.bioRxiv [Preprint]. 2024 Mar 27:2024.03.24.586508. doi: 10.1101/2024.03.24.586508. bioRxiv. 2024. Update in: Anal Chim Acta. 2025 Jan 2;1333:343392. doi: 10.1016/j.aca.2024.343392. PMID: 38585754 Free PMC article. Updated. Preprint.
-
A portable and sensitive DNA-based electrochemical sensor for detecting piconewton-scale cellular forces.Anal Chim Acta. 2025 Jan 2;1333:343392. doi: 10.1016/j.aca.2024.343392. Epub 2024 Nov 4. Anal Chim Acta. 2025. PMID: 39615910
References
-
- Bard AJ, Faulkner LR, White HS, 2022. Electrochemical methods: fundamentals and applications. John Wiley & Sons.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources