Phosgene Toxicity Clinical Manifestations and Treatment: A Systematic Review
- PMID: 38459726
- PMCID: PMC10924841
- DOI: 10.22074/cellj.2024.2011864.1405
Phosgene Toxicity Clinical Manifestations and Treatment: A Systematic Review
Abstract
Exposure to phosgene, a colourless poisonous gas, can lead to various health issues including eye irritation, a dry and burning throat, vomiting, coughing, the production of foamy sputum, difficulty in breathing, and chest pain. This systematic review aims to provide a comprehensive overview of the clinical manifestations and treatment of phosgene toxicity by systematically analyzing available literature. The search was carried out on various scientific online databases to include related studies based on inclusion and exclusion criteria with the use of PRISMA guidelines. The quality of the studies was assessed using the Mixed Methods Appraisal Tool (MMAT). Thirteen articles were included in this study after the screening process. Inhalation was found to be the primary health problem of phosgene exposure with respiratory symptoms such as coughing and dyspnea. Chest pain and pulmonary oedema were also observed in some cases. Furthermore, pulmonary crackle was the most common reported physical examination. Beyond respiratory tract health issues, other organs involvements such as cardiac, skin, eye, and renal were also reported in some studies. The symptoms can occur within minutes to hours after exposure, and the severity of symptoms depends on the amount of inhaled phosgene. The findings showed that bronchodilators can alleviate symptoms of bronchoconstriction caused by phosgene. Oxygen therapy is essential for restoring oxygen levels and improving respiratory function in cases of hypoxemia. In severe cases, endotracheal intubation and invasive mechanical ventilation are used for artificial respiration, along with the removal of tracheal secretions and pulmonary oedema fluid through suctioning as crucial components of supportive therapy.
Keywords: Chemical Agent; Clinical Manifestations; Exposure; Phosgene; Therapy.
Figures
References
-
- Nicholson-Roberts TC. Phosgene use in World War 1 and early evaluations of pathophysiology. J R Army Med Corps. 2019;165(3):183–187. - PubMed
-
- Graham S, Fairhall S, Rutter S, Auton P, Rendell R, Smith A, et al. Continuous positive airway pressure: An early intervention to prevent phosgene-induced acute lung injury. Toxicol Lett. 2018;293:120–126. - PubMed
-
- Grainge C, Jugg BJ, Smith AJ, Brown RF, Jenner J, Parkhouse DA, et al. Delayed low-dose supplemental oxygen improves survival following phosgene-induced acute lung injury. Inhal Toxicol. 2010;22(7):552–560. - PubMed
-
- Li W, Rosenbruch M, Pauluhn J. Effect of PEEP on phosgene-induced lung edema: pilot study on dogs using protective ventilation strategies. Exp Toxicol Pathol. 2015;67(2):109–116. - PubMed
LinkOut - more resources
Full Text Sources