Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Apr:538:109070.
doi: 10.1016/j.carres.2024.109070. Epub 2024 Mar 5.

Review on emerging trends and challenges in the modification of xanthan gum for various applications

Affiliations
Review

Review on emerging trends and challenges in the modification of xanthan gum for various applications

Pramendra Kumar et al. Carbohydr Res. 2024 Apr.

Abstract

This review explores the realm of structural modifications and broad spectrum of their potential applications, with a special focus on the synthesis of xanthan gum derivatives through graft copolymerization methods. It delves into the creation of these derivatives by attaching functional groups (-OH and -COOH) to xanthan gum, utilizing a variety of initiators for grafting, and examining their diverse applications, especially in the areas of food packaging, pharmaceuticals, wastewater treatment, and antimicrobial activities. Xanthan gum is a biocompatible, biodegradable, less toxic, bioactive, and cost-effective natural polymer derived from Xanthomonas species. The native properties of xanthan gum can be improved by cross-linking, grafting, curing, blending, and various modification techniques. Grafted xanthan gum has excellent biodegradability, metal binding, dye adsorption, immunological properties, and wound healing ability. Owing to its remarkable properties, such as biocompatibility and its ability to form gels resembling the extracellular matrix of tissues, modified xanthan gum finds extensive utility across biomedicine, engineering, and the food industry. Furthermore, the review also covers various modified derivatives of xanthan gum that exhibit excellent biodegradability, metal binding, dye adsorption, immunological properties, and wound healing abilities. These applications could serve as important resources for a wide range of industries in future product development.

Keywords: Bio-medical applications; Food industry; Grafting; Tissue engineering; Xanthan gum.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources