Targeted sequencing from cerebrospinal fluid for rapid identification of drug-resistant tuberculous meningitis
- PMID: 38466092
- PMCID: PMC11005362
- DOI: 10.1128/jcm.01287-23
Targeted sequencing from cerebrospinal fluid for rapid identification of drug-resistant tuberculous meningitis
Abstract
Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.
Keywords: CSF; Deeplex; drug resistance; targeted next generation sequencing.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



References
-
- Thao LTP, Heemskerk AD, Geskus RB, Mai NTH, Ha DTM, Chau TTH, Phu NH, Chau NVV, Caws M, Lan NH, Thu DDA, Thuong NTT, Day J, Farrar JJ, Torok ME, Bang ND, Thwaites GE, Wolbers M. 2018. Prognostic models for 9-month mortality in tuberculous meningitis. Clin Infect Dis 66:523–532. doi:10.1093/cid/cix849 - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources