Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May;8(5):901-911.
doi: 10.1038/s41559-024-02364-1. Epub 2024 Mar 11.

One sixth of Amazonian tree diversity is dependent on river floodplains

John Ethan Householder  1 Florian Wittmann  2   3 Jochen Schöngart  4 Maria Teresa Fernandez Piedade  4 Wolfgang J Junk  5 Edgardo Manuel Latrubesse  6 Adriano Costa Quaresma  7   4 Layon O Demarchi  4 Guilherme de S Lobo  4 Daniel P P de Aguiar  8   9 Rafael L Assis  10 Aline Lopes  11 Pia Parolin  12 Iêda Leão do Amaral  13 Luiz de Souza Coelho  13 Francisca Dionízia de Almeida Matos  13 Diógenes de Andrade Lima Filho  13 Rafael P Salomão  14   15 Carolina V Castilho  16 Juan Ernesto Guevara-Andino  17   18 Marcelo de Jesus Veiga Carim  19 Oliver L Phillips  20 Dairon Cárdenas López  21 William E Magnusson  22 Daniel Sabatier  23 Juan David Cardenas Revilla  13 Jean-François Molino  23 Mariana Victória Irume  13 Maria Pires Martins  13 José Renan da Silva Guimarães  24 José Ferreira Ramos  13 Domingos de Jesus Rodrigues  25 Olaf S Bánki  26 Carlos A Peres  27 Nigel C A Pitman  28 Joseph E Hawes  29 Everton José Almeida  30 Luciane Ferreira Barbosa  30 Larissa Cavalheiro  30 Márcia Cléia Vilela Dos Santos  30 Bruno Garcia Luize  31 Evlyn Márcia Moraes de Leão Novo  32 Percy Núñez Vargas  33 Thiago Sanna Freire Silva  34 Eduardo Martins Venticinque  35 Angelo Gilberto Manzatto  36 Neidiane Farias Costa Reis  37 John Terborgh  38   39 Katia Regina Casula  37 Flávia R C Costa  22 Euridice N Honorio Coronado  40   41 Abel Monteagudo Mendoza  33   42 Juan Carlos Montero  13   43 Ted R Feldpausch  20   44 Gerardo A Aymard C  45 Chris Baraloto  46 Nicolás Castaño Arboleda  21 Julien Engel  23   46 Pascal Petronelli  47 Charles Eugene Zartman  13 Timothy J Killeen  48 Lorena Maniguaje Rincón  13 Beatriz S Marimon  49 Ben Hur Marimon-Junior  49 Juliana Schietti  13 Thaiane R Sousa  50 Rodolfo Vasquez  42 Bonifacio Mostacedo  51 Dário Dantas do Amaral  15 Hernán Castellanos  52 Marcelo Brilhante de Medeiros  53 Marcelo Fragomeni Simon  53 Ana Andrade  54 José Luís Camargo  54 William F Laurance  39 Susan G W Laurance  39 Emanuelle de Sousa Farias  55   56 Maria Aparecida Lopes  57 José Leonardo Lima Magalhães  58   59 Henrique Eduardo Mendonça Nascimento  13 Helder Lima de Queiroz  60 Roel Brienen  20 Pablo R Stevenson  61 Alejandro Araujo-Murakami  62 Tim R Baker  20 Bruno Barçante Ladvocat Cintra  63 Yuri Oliveira Feitosa  64 Hugo F Mogollón  65 Janaína Costa Noronha  25 Flávia Rodrigues Barbosa  25 Rainiellen de Sá Carpanedo  25 Joost F Duivenvoorden  66 Miles R Silman  67 Leandro Valle Ferreira  15 Carolina Levis  68 José Rafael Lozada  69 James A Comiskey  70   71 Freddie C Draper  72 José Julio de Toledo  73 Gabriel Damasco  74 Nállarett Dávila  31 Roosevelt García-Villacorta  75   76 Alberto Vicentini  22 Fernando Cornejo Valverde  77 Alfonso Alonso  71 Luzmila Arroyo  62 Francisco Dallmeier  71 Vitor H F Gomes  78   79 Eliana M Jimenez  80 David Neill  81 Maria Cristina Peñuela Mora  82 Fernanda Antunes Carvalho  22   83 Fernanda Coelho de Souza  20   22 Kenneth J Feeley  84   85 Rogerio Gribel  13 Marcelo Petratti Pansonato  13   86 Marcos Ríos Paredes  87 Jos Barlow  88 Erika Berenguer  88   89 Kyle G Dexter  90   91 Joice Ferreira  59 Paul V A Fine  92 Marcelino Carneiro Guedes  93 Isau Huamantupa-Chuquimaco  94 Juan Carlos Licona  43 Toby Pennington  44   91 Boris Eduardo Villa Zegarra  95 Vincent Antoine Vos  96 Carlos Cerón  97 Émile Fonty  23   98 Terry W Henkel  99 Paul Maas  100 Edwin Pos  101   102 Marcos Silveira  103 Juliana Stropp  104 Raquel Thomas  105 Doug Daly  106 William Milliken  107 Guido Pardo Molina  96 Ima Célia Guimarães Vieira  15 Bianca Weiss Albuquerque  4 Wegliane Campelo  73 Thaise Emilio  22   107 Alfredo Fuentes  108   109 Bente Klitgaard  110 José Luis Marcelo Pena  111 Priscila F Souza  50 J Sebastián Tello  109 Corine Vriesendorp  28 Jerome Chave  112 Anthony Di Fiore  113   114 Renato Richard Hilário  73 Luciana de Oliveira Pereira  44 Juan Fernando Phillips  115 Gonzalo Rivas-Torres  114   116 Tinde R van Andel  100   117 Patricio von Hildebrand  118 William Balee  119 Edelcilio Marques Barbosa  13 Luiz Carlos de Matos Bonates  13 Hilda Paulette Dávila Doza  87 Ricardo Zárate Gómez  120 Therany Gonzales  121 George Pepe Gallardo Gonzales  87 Bruce Hoffman  122 André Braga Junqueira  123 Yadvinder Malhi  124 Ires Paula de Andrade Miranda  13 Linder Felipe Mozombite-Pinto  87 Adriana Prieto  125 Agustín Rudas  125 Ademir R Ruschel  59 Natalino Silva  126 César I A Vela  127 Stanford Zent  128 Egleé L Zent  128 Angela Cano  61   129 Yrma Andreina Carrero Márquez  130 Diego F Correa  61   131 Janaina Barbosa Pedrosa Costa  93 Bernardo Monteiro Flores  68 David Galbraith  20 Milena Holmgren  132 Michelle Kalamandeen  133 Marcelo Trindade Nascimento  134 Alexandre A Oliveira  86 Hirma Ramirez-Angulo  135 Maira Rocha  4 Veridiana Vizoni Scudeller  136 Rodrigo Sierra  137 Milton Tirado  137 Maria Natalia Umaña  138 Geertje van der Heijden  139 Emilio Vilanova Torre  135   140 Manuel Augusto Ahuite Reategui  141 Cláudia Baider  86   142 Henrik Balslev  143 Sasha Cárdenas  61 Luisa Fernanda Casas  61 William Farfan-Rios  33   67 Cid Ferreira  13 Reynaldo Linares-Palomino  71 Casimiro Mendoza  144   145 Italo Mesones  92 Germaine Alexander Parada  62 Armando Torres-Lezama  135 Ligia Estela Urrego Giraldo  146 Daniel Villarroel  62   147 Roderick Zagt  148 Miguel N Alexiades  149 Edmar Almeida de Oliveira  49 Karina Garcia-Cabrera  67 Lionel Hernandez  52 Walter Palacios Cuenca  150 Susamar Pansini  37 Daniela Pauletto  151 Freddy Ramirez Arevalo  152 Adeilza Felipe Sampaio  37 Elvis H Valderrama Sandoval  152   153 Luis Valenzuela Gamarra  42 Hans Ter Steege  154   155
Affiliations

One sixth of Amazonian tree diversity is dependent on river floodplains

John Ethan Householder et al. Nat Ecol Evol. 2024 May.

Erratum in

  • Author Correction: One sixth of Amazonian tree diversity is dependent on river floodplains.
    Householder JE, Wittmann F, Schöngart J, Piedade MTF, Junk WJ, Latrubesse EM, Quaresma AC, Demarchi LO, de S Lobo G, Aguiar DPP, Assis RL, Lopes A, Parolin P, Leão do Amaral I, Coelho LS, de Almeida Matos FD, Lima Filho DA, Salomão RP, Castilho CV, Guevara-Andino JE, Carim MJV, Phillips OL, Cárdenas López D, Magnusson WE, Sabatier D, Revilla JDC, Molino JF, Irume MV, Martins MP, Guimarães JRDS, Ramos JF, Rodrigues DJ, Bánki OS, Peres CA, Pitman NCA, Hawes JE, Almeida EJ, Barbosa LF, Cavalheiro L, Dos Santos MCV, Luize BG, Novo EMML, Núñez Vargas P, Silva TSF, Venticinque EM, Manzatto AG, Reis NFC, Terborgh J, Casula KR, Costa FRC, Honorio Coronado EN, Monteagudo Mendoza A, Montero JC, Feldpausch TR, Aymard C GA, Baraloto C, Castaño Arboleda N, Engel J, Petronelli P, Zartman CE, Killeen TJ, Rincón LM, Marimon BS, Marimon-Junior BH, Schietti J, Sousa TR, Vasquez R, Mostacedo B, Dantas do Amaral D, Castellanos H, Medeiros MB, Simon MF, Andrade A, Camargo JL, Laurance WF, Laurance SGW, Farias ES, Lopes MA, Magalhães JLL, Mendonça Nascimento HE, Queiroz HL, Brienen R, Stevenson PR, Araujo-Murakami A, Baker TR, Cintra BBL, Feitosa YO, Mogollón HF, Noronha JC, Barbosa FR, de Sá Carpanedo… See abstract for full author list ➔ Householder JE, et al. Nat Ecol Evol. 2024 May;8(5):1046-1047. doi: 10.1038/s41559-024-02400-0. Nat Ecol Evol. 2024. PMID: 38565681 Free PMC article. No abstract available.

Abstract

Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Broad-scale geographic and environmental patterning of species turnover across floodplain and adjacent terra firme forest habitats, for várzea–terra firme and igapó–terra firme comparisons.
a, Spatial patterns of species turnover for várzea and igapó, showing a concentration of high species turnover located centrally within the fluvial network. Grey rivers are masked out because they either correspond to a different floodplain habitat or did not meet minimum sampling criteria for analysis. b, Regional differences in seasonal flooding are described as an annual flood wave that originates in Andean headwaters, peaks in central Amazonia and dissipates near the Amazon mouth. Floodplains positioned at the peak of this flood wave are seasonally inundated by the highest-amplitude and longest-lasting floods. LWT, land water thickness. c, Patterning of species turnover of várzea and igapó with surrounding terra firme along the flood wave. The black dashed line shows the lower bound of species turnover with flooding, assessed with quantile regression at τ = 0.1. d, Mapped residuals from quantile regression modelling for várzea and igapó. Throughout much of western Amazonia, species turnover is relatively higher than expected given the lower flooding implied by its headwater position on the flood wave.
Fig. 2
Fig. 2. Relationships between species turnover and the relative abundance and richness of floodplain specialists, habitat generalists and spillover from terra firme (terra firme specialists) in várzea and igapó.
With increasing levels of species turnover, floodplain specialists become more dominant, while spillover from terra firme species decreases. The proportions are derived from interpolated compositional grids of várzea and igapó after cross-referencing with the names of the 1,666 species tested for habitat association. The relationships with species turnover are derived from simple least squares models. The coloured boxes indicate the proportion of explained variance (r2) and P values. The trend lines (black) are bounded by coloured bands showing the 95% CIs. Density plots for the relative abundance and richness of each species group are shown in the right margins.
Extended Data Fig. 1
Extended Data Fig. 1. Distribution of inventory data used to create habitat-specific compositional grids.
Sampled sites include 1,705 mostly 1-ha tree inventory plots with full information on species composition and abundances. Plots were classified as terra firme (n = 1,250, 73%), várzea (n = 271, 16%), or igapó (n = 184, 11%), following habitat designations of ATDN contributors.
Extended Data Fig. 2
Extended Data Fig. 2. Schematic of the methods used to compare floodplain and terra firme tree compositions, illustrated for two grid cells.
(a) Forest plot inventories (colored dots) were separated into várzea, igapó and terra firme categories, and species abundance information for separate várzea, igapó and terra firme grids was calculated at each 1-degree cell (only two shown), using distance-weighted interpolations of inventory plot data from an approximately 300 km circular window (red lines). (b) Floodplain and terra firme grids were overlaid and species turnover computed at analogous (vertically overlapping) cells. (c) Spatially-continuous grids of species turnover for várzea-terra firme and igapó-terra firme comparisons. The number of cells where species turnover is calculated depends on the spatial distribution of floodplain inventories and how it overlaps with terra firme inventories. This included 301 cells and 347 cells for várzea-terra firme and igapó-terra firme comparisons, respectively. In an alternative procedure of calculating species turnover, the interpolation step was excluded and cell compositional data was pooled only from plots located inside cells. For this second approach, the resulting number of cells where species turnover was calculated was 25 and 22 for várzea-terra firme and igapó-terra firme comparisons, respectively.
Extended Data Fig. 3
Extended Data Fig. 3. Comparison of flooding relationships with species turnover using two alternative procedures for populating cell compositional data.
While interpolating species abundances maximizes the number of cells where species turnover can be calculated, it introduces spatial autocorrelation. On the other hand, pooling inventories within grid cells reduces the number of cells where species turnover can be calculated, but it maintains spatial independence among cells. We compared both methods to assess the robustness of our results to spatial dependencies. For the approach based on pooling, species cell abundance information was pooled only from inventories located inside individual grid cells, rather than interpolated from inventories from a larger 300 km circular window, in order to avoid residual spatial autocorrelation. Quantile regression slopes (at tau = 0.1) and their 95% confidences intervals are shown for várzea- and igapó-terra firme. The lower bounds of várzea-terra firme species turnover with flooding are statistically equivalent between pooled compositional data (slope ± 95% CI = 1.29 × 10−2 ± 1.21 × 10−2, t = 2.20, n = 25, p = 0.038) and interpolated data (slope ± 95% CI = 1.21 × 10−2 ± 2.48 × 10−3, t = 9.57, n = 301, p < 0.001). The lower bounds for igapó-terra firme are likewise similar between pooled (slope ± 95% CI = 1.54 × 10−2 ± 1.19 × 10−2, t = 2.66, n = 22, p = 0.015) and interpolated methods (slope ± 95% CI = 1.05 × 10−2 ± 2.60 × 10−3, t = 7.86, n = 347, p < 0.001). Slopes from all comparisons were significant (p < 0.05) and had overlapping 95% confidence intervals.

References

    1. Junk, W. J., Piedade, M. T. F., Wittmann, F., Schöngart, J. & Parolin, P. Amazonian Floodplain Forests: Ecophysiology, Biodiversity and Sustainable Management (Springer, 2010).
    1. Salo J, et al. River dynamics and the diversity of the Amazon lowland forest. Nature. 1986;322:245–258. doi: 10.1038/322254a0. - DOI
    1. Gentry A. Changes in plant community diversity and floristic composition on environmental and geographic gradients. Ann. Mo. Bot. Gard. 1988;75:1–34. doi: 10.2307/2399464. - DOI
    1. Wittmann F, et al. Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J. Biogeogr. 2006;33:1334–1347. doi: 10.1111/j.1365-2699.2006.01495.x. - DOI
    1. Meave J, Kellman M, MacDougall A, Rosales J. Riparian habitats as tropical forest refugia. Glob. Ecol. Biogeogr. Lett. 1991;1:69–76. doi: 10.2307/2997492. - DOI