Fractals in the Neurosciences: A Translational Geographical Approach
- PMID: 38468071
- DOI: 10.1007/978-3-031-47606-8_47
Fractals in the Neurosciences: A Translational Geographical Approach
Abstract
The chapter presents three new fractal indices (fractal fragmentation index, fractal tentacularity index, and fractal anisotropy index) and normalized Kolmogorov complexity with proven applicability in geographic research, developed by the authors, and the possibility of their future use in neuroscience. The research demonstrates the relevance of fractal analysis in different fields and the basic concepts and principles of fractal geometry being sufficient for the development of models relevant to the studied reality. Also, the research highlighted the need to continue interdisciplinary research based on known fractal indicators, as well as the development of new analysis methods with the translational potential between fields.
Keywords: Fractal parameters; Geography; Kolmogorov complexity; Neuroscience.
© 2024. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Similar articles
-
Fractals in the neurosciences, Part II: clinical applications and future perspectives.Neuroscientist. 2015 Feb;21(1):30-43. doi: 10.1177/1073858413513928. Epub 2013 Dec 20. Neuroscientist. 2015. PMID: 24362814 Review.
-
Computational and Translational Fractal-Based Analysis in the Translational Neurosciences: An Overview.Adv Neurobiol. 2024;36:781-793. doi: 10.1007/978-3-031-47606-8_39. Adv Neurobiol. 2024. PMID: 38468063 Review.
-
Fractals in the Neurosciences, Part I: General Principles and Basic Neurosciences.Neuroscientist. 2014 Aug;20(4):403-417. doi: 10.1177/1073858413513927. Epub 2013 Dec 20. Neuroscientist. 2014. PMID: 24362815
-
ImageJ in Computational Fractal-Based Neuroscience: Pattern Extraction and Translational Research.Adv Neurobiol. 2024;36:795-814. doi: 10.1007/978-3-031-47606-8_40. Adv Neurobiol. 2024. PMID: 38468064
-
Computational Fractal-Based Neurosurgery.Adv Exp Med Biol. 2024;1462:97-105. doi: 10.1007/978-3-031-64892-2_6. Adv Exp Med Biol. 2024. PMID: 39523261 Review.
References
-
- Ahammer H. Higuchi dimension of digital images. PLoS ONE. 2011;6:1–8. https://doi.org/10.1371/journal.pone.0024796 . [Internet]. Public Library of Science - DOI
-
- Ahammer H, Reiss MA, Hackhofer M, Andronache I, Radulovic M, Labra-Spröhnle F, Jelinek HF, et al. ComsystanJ: A collection of Fiji/ImageJ2 plugins for nonlinear and complexity analysis in 1D, 2D, and 3D. PLOS ONE. 2023;18(10):e0292217. https://doi.org/10.1371/journal.pone.0292217
-
- Ahammer H, Sabathiel N, Reiss MA. Is a two-dimensional generalization of the Higuchi algorithm really necessary? Chaos [Internet], vol. 25. American Institute of Physics; 2015. p. 073104. https://doi.org/10.1063/1.4923030 . [cited 2022 Jun 29] - DOI
-
- Allain C, Cloitre M. Characterizing the lacunarity of random and deterministic fractal sets. Phys Rev A [Int] APS. 1991;44:3552–8. https://link.aps.org/doi/10.1103/PhysRevA.44.3552
-
- Amthor FR, Takahashi ES, Oyster CW. Morphologies of rabbit retinal ganglion cells with complex receptive fields. J Comp Neurol. 1989;280:97–121. - PubMed