One night of 10-h sleep restores vigilance after total sleep deprivation: the role of delta and theta power during recovery sleep
- PMID: 38469277
- PMCID: PMC10899914
- DOI: 10.1007/s41105-022-00428-y
One night of 10-h sleep restores vigilance after total sleep deprivation: the role of delta and theta power during recovery sleep
Abstract
A series of studies have demonstrated that impaired vigilance performance caused by total sleep deprivation could restore to baseline when recovery sleep is longer than the habitual sleep. However, it is unclear which factors on the recovery night affected the restoration of vigilance performance impaired by sleep deprivation. 22 participant's sleep electroencephalograms were recorded with polysomnography in 8-h baseline sleep and one-night 10-h recovery sleep following 36-h sleep deprivation. Participants completed a 10-min psychomotor vigilance task and subjective ratings after baseline and recovery sleep the following day. Objective vigilance and subjective ratings were impaired by sleep deprivation and recovered to baseline after one-night 10-h recovery sleep. Compared with baseline sleep, sleep depth increased with enhanced delta and theta power density, and sleep duration was also prolonged during recovery sleep. The vigilance performance difference between recovery and baseline sleep was taken as a behavioral index of the restoration of vigilance. The restoration of vigilance was correlated with the delta and theta power density of stage N3 in the frontal and central region during the recovery sleep. These findings indicated that one-night 10-h recovery sleep could restore the impaired objective vigilance and subjective ratings caused by sleep deprivation. The recuperative effect of vigilance relies on individual differences in sleep intensity. Individuals with higher sleep intensity in recovery sleep obtained better vigilance recovery.
Keywords: Delta and theta power; Recovery sleep; Stage N3; Vigilance.
© The Author(s), under exclusive licence to Japanese Society of Sleep Research 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Conflict of interest statement
Conflict of interestThe authors report no conflict of financial or academic interest. All authors have read and approved the manuscript.
Figures
References
LinkOut - more resources
Full Text Sources