Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 1;135(4):lxae063.
doi: 10.1093/jambio/lxae063.

Assessing silver nanoparticle and antimicrobial combinations for antibacterial activity and biofilm prevention on surgical sutures

Affiliations

Assessing silver nanoparticle and antimicrobial combinations for antibacterial activity and biofilm prevention on surgical sutures

Diana K Al-Sawarees et al. J Appl Microbiol. .

Abstract

Aims: To evaluate the effect of silver nanoparticles alone and in combination with Triclosan, and trans-cinnamaldehyde against Staphylococcus aureus and Escherichia coli biofilms on sutures to improve patients' outcomes.

Methods and results: Silver nanoparticles were prepared by chemical method and characterized by UV-visible spectrophotometer and dynamic light scattering. The minimum inhibitory concentration was assessed by the Microdilution assay. The antibiofilm activity was determined using crystal violet assay. A checkerboard assay using the fractional inhibitory concentration index and time-kill curve was used to investigate the synergistic effect of silver nanoparticle combinations. The hemolytic activity was determined using an erythrocyte hemolytic assay. Our results revealed that silver nanoparticles, Triclosan, and trans-cinnamaldehyde (TCA) inhibited S.aureus and E.coli biofilms. Silver nanoparticles with TCA showed a synergistic effect (FICI values 0.35 and 0.45 against S. aureus and E. coli biofilms, respectively), and silver nanoparticles with Triclosan showed complete inhibition of S. aureus biofilm. The hemolytic activity was <2.50% for the combinations.

Keywords: Escherichia coli; Staphylococcus; biofilm; nanoparticles; surgical site infections.

PubMed Disclaimer

LinkOut - more resources