Identification of four biotypes in temporal lobe epilepsy via machine learning on brain images
- PMID: 38472252
- PMCID: PMC10933450
- DOI: 10.1038/s41467-024-46629-6
Identification of four biotypes in temporal lobe epilepsy via machine learning on brain images
Abstract
Artificial intelligence provides an opportunity to try to redefine disease subtypes based on similar pathobiology. Using a machine-learning algorithm (Subtype and Stage Inference) with cross-sectional MRI from 296 individuals with focal epilepsy originating from the temporal lobe (TLE) and 91 healthy controls, we show phenotypic heterogeneity in the pathophysiological progression of TLE. This study was registered in the Chinese Clinical Trials Registry (number: ChiCTR2200062562). We identify two hippocampus-predominant phenotypes, characterized by atrophy beginning in the left or right hippocampus; a third cortex-predominant phenotype, characterized by hippocampus atrophy after the neocortex; and a fourth phenotype without atrophy but amygdala enlargement. These four subtypes are replicated in the independent validation cohort (109 individuals). These subtypes show differences in neuroanatomical signature, disease progression and epilepsy characteristics. Five-year follow-up observations of these individuals reveal differential seizure outcomes among subtypes, indicating that specific subtypes may benefit from temporal surgery or pharmacological treatment. These findings suggest a diverse pathobiological basis underlying focal epilepsy that potentially yields to stratification and prognostication - a necessary step for precise medicine.
© 2024. The Author(s).
Conflict of interest statement
The author declares no competing interests.
Figures



Similar articles
-
Magnetic resonance imaging pattern learning in temporal lobe epilepsy: classification and prognostics.Ann Neurol. 2015 Mar;77(3):436-46. doi: 10.1002/ana.24341. Epub 2015 Jan 13. Ann Neurol. 2015. PMID: 25546153
-
Identification of different MRI atrophy progression trajectories in epilepsy by subtype and stage inference.Brain. 2023 Nov 2;146(11):4702-4716. doi: 10.1093/brain/awad284. Brain. 2023. PMID: 37807084 Free PMC article.
-
Progression in temporal lobe epilepsy: differential atrophy in mesial temporal structures.Neurology. 2005 Jul 26;65(2):223-8. doi: 10.1212/01.wnl.0000169066.46912.fa. Neurology. 2005. PMID: 16043790
-
Progression of gray matter atrophy in seizure-free patients with temporal lobe epilepsy.Epilepsia. 2016 Apr;57(4):621-9. doi: 10.1111/epi.13334. Epub 2016 Feb 11. Epilepsia. 2016. PMID: 26865066
-
Tract-specific atrophy in focal epilepsy: Disease, genetics, or seizures?Ann Neurol. 2017 Feb;81(2):240-250. doi: 10.1002/ana.24848. Ann Neurol. 2017. PMID: 28009132
Cited by
-
Identifying brain degeneration patterns in early-stage Parkinson's disease: a multimodal MRI study.NPJ Parkinsons Dis. 2025 Apr 25;11(1):93. doi: 10.1038/s41531-025-00975-4. NPJ Parkinsons Dis. 2025. PMID: 40280955 Free PMC article.
-
Preclinical Testing Strategies for Epilepsy Therapy Development.Epilepsy Curr. 2024 Oct 25;25(1):51-57. doi: 10.1177/15357597241292197. eCollection 2025 Jan-Feb. Epilepsy Curr. 2024. PMID: 39539399 Free PMC article. Review.
-
Multimodal quantitative analysis guides precise preoperative localization of epilepsy.J Neurol. 2025 Aug 15;272(9):579. doi: 10.1007/s00415-025-13324-5. J Neurol. 2025. PMID: 40815323 Review.
-
Temporopolar blurring signifies abnormalities of white matter in mesial temporal lobe epilepsy.Ann Clin Transl Neurol. 2024 Nov;11(11):2932-2945. doi: 10.1002/acn3.52204. Epub 2024 Sep 28. Ann Clin Transl Neurol. 2024. PMID: 39342438 Free PMC article.
-
Predicting the Path: How Machine Learning Can Identify Subtypes of Epilepsy and Predict Disease Progression.Epilepsy Curr. 2024 Sep 28;24(6):423-425. doi: 10.1177/15357597241279744. eCollection 2024 Nov-Dec. Epilepsy Curr. 2024. PMID: 39540123 Free PMC article. No abstract available.
References
MeSH terms
LinkOut - more resources
Full Text Sources