PrecisionLymphoNet: Advancing Malignant Lymphoma Diagnosis via Ensemble Transfer Learning with CNNs
- PMID: 38472941
- PMCID: PMC10931106
- DOI: 10.3390/diagnostics14050469
PrecisionLymphoNet: Advancing Malignant Lymphoma Diagnosis via Ensemble Transfer Learning with CNNs
Abstract
Malignant lymphoma, which impacts the lymphatic system, presents diverse challenges in accurate diagnosis due to its varied subtypes-chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Lymphoma is a form of cancer that begins in the lymphatic system, impacting lymphocytes, which are a specific type of white blood cell. This research addresses these challenges by proposing ensemble and non-ensemble transfer learning models employing pre-trained weights from VGG16, VGG19, DenseNet201, InceptionV3, and Xception. For the ensemble technique, this paper adopts a stack-based ensemble approach. It is a two-level classification approach and best suited for accuracy improvement. Testing on a multiclass dataset of CLL, FL, and MCL reveals exceptional diagnostic accuracy, with DenseNet201, InceptionV3, and Xception exceeding 90% accuracy. The proposed ensemble model, leveraging InceptionV3 and Xception, achieves an outstanding 99% accuracy over 300 epochs, surpassing previous prediction methods. This study demonstrates the feasibility and efficiency of the proposed approach, showcasing its potential in real-world medical applications for precise lymphoma diagnosis.
Keywords: DenseNet201; Inceptionv3; Xception; chronic lymphocytic leukemia (CLL); ensemble technique; follicular lymphoma (FL); malignant lymphoma; mantle cell lymphoma (MCL); transfer learning.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
















Similar articles
-
Combining State-of-the-Art Pre-Trained Deep Learning Models: A Noble Approach for Skin Cancer Detection Using Max Voting Ensemble.Diagnostics (Basel). 2023 Dec 30;14(1):89. doi: 10.3390/diagnostics14010089. Diagnostics (Basel). 2023. PMID: 38201399 Free PMC article.
-
Classification of digital pathological images of non-Hodgkin's lymphoma subtypes based on the fusion of transfer learning and principal component analysis.Med Phys. 2020 Sep;47(9):4241-4253. doi: 10.1002/mp.14357. Epub 2020 Jul 18. Med Phys. 2020. PMID: 32593219
-
Hybrid ensemble - deep transfer model for early cassava leaf disease classification.Heliyon. 2024 Aug 14;10(16):e36097. doi: 10.1016/j.heliyon.2024.e36097. eCollection 2024 Aug 30. Heliyon. 2024. PMID: 39247275 Free PMC article.
-
Mantle cell lymphoma, malt lymphoma, small lymphocytic lymphoma, and follicular lymphoma of the oral cavity: An update.J Oral Pathol Med. 2021 Jul;50(6):622-630. doi: 10.1111/jop.13214. Epub 2021 Jul 1. J Oral Pathol Med. 2021. PMID: 34101256 Review.
-
Composite mantle cell lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma: a clinicopathologic and molecular study.Hum Pathol. 2013 Jan;44(1):110-21. doi: 10.1016/j.humpath.2012.04.022. Epub 2012 Aug 31. Hum Pathol. 2013. PMID: 22944294 Free PMC article. Review.
Cited by
-
Advancements in Hematologic Malignancy Detection: A Comprehensive Survey of Methodologies and Emerging Trends.ScientificWorldJournal. 2025 May 18;2025:1671766. doi: 10.1155/tswj/1671766. eCollection 2025. ScientificWorldJournal. 2025. PMID: 40421320 Free PMC article. Review.
References
-
- Capobianco N., Meignan M., Cottereau A.S., Vercellino L., Sibille L., Spottiswoode B., Zuehlsdorff S., Casasnovas O., Thieblemont C., Buvat I. Deep-learning 18F-FDG uptake classification enables total metabolic tumor volume estimation in diffuse large B-cell lymphoma. J. Nucl. Med. 2021;62:30–36. doi: 10.2967/jnumed.120.242412. - DOI - PMC - PubMed
-
- Patil A.M., Patil M.D., Birajdar G.K. White blood cells image classification using deep learning with canonical correlation analysis. IRBM. 2021;42:378–389. doi: 10.1016/j.irbm.2020.08.005. - DOI
-
- Malagi A.V., Kandasamy D., Pushpam D., Khare K., Sharma R., Kumar R., Bakhshi S., Mehndiratta A. IVIM-DKI with parametric reconstruction method for lymph node evaluation and characterization in lymphoma: A preliminary study comparison with FDG-PET/CT. Results Eng. 2023;17:100928. doi: 10.1016/j.rineng.2023.100928. - DOI
-
- Hasani N., Paravastu S.S., Farhadi F., Yousefirizi F., Morris M.A., Rahmim A., Roschewski M., Summers R.M., Saboury B. Artificial intelligence in lymphoma PET imaging: A scoping review (current trends and future directions) PET Clin. 2022;17:145–174. doi: 10.1016/j.cpet.2021.09.006. - DOI - PMC - PubMed
-
- Tambe R., Mahajan S., Shah U., Agrawal M., Garware B. Towards designing an automated classification of lymphoma subtypes using deep neural networks; Proceedings of the ACM India Joint International Conference on Data Science and Management of Data; Swissotel, India. 3–5 January 2019; pp. 143–149.
LinkOut - more resources
Full Text Sources