Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Feb 29;14(5):520.
doi: 10.3390/diagnostics14050520.

Nucleic-Acid-Based Molecular Fungal Diagnostics: A Way to a Better Future

Affiliations
Review

Nucleic-Acid-Based Molecular Fungal Diagnostics: A Way to a Better Future

Rajendra Gudisa et al. Diagnostics (Basel). .

Abstract

The world has seen a tremendous increase in the number of fungal infections during the past two decades. Recently, the World Health Organisation released the pathogen priority list for fungal infections, signifying the importance of these infections in the fields of research and public health. Microbiology laboratories demand an upgrade in the diagnostic system to keep up with the increased burden of these infections. Diagnosis of fungal infections using conventional techniques has always faced limitations in terms of specificity, sensitivity, and turnaround time. Although these methods are the core pillars of the diagnosis, there is an increased need for molecular approaches. Molecular techniques have revolutionised the field of fungal diagnostics. The diverse array of molecular techniques, including techniques like Polymerase Chain Reaction (PCR), have emerged as a cornerstone in fungal diagnostics. Molecular techniques have transformed fungal diagnostics, providing powerful tools for the rapid and accurate identification of pathogens. As these technologies continue to evolve, their integration into routine clinical practice holds the promise of improving patient outcomes through timely and targeted antifungal interventions. This review will cover the molecular approaches involved in fungal diagnostics, moving from the basic techniques to the advanced-level nucleic-acid-based molecular approaches providing a high throughput and decreased turnaround time for the diagnosis of serious fungal infections.

Keywords: fungal infection; molecular diagnosis; point of care.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Similar articles

Cited by

References

    1. Jenks J.D., White P.L., Kidd S.E., Goshia T., Fraley S.I., Hoenigl M., Thompson G.R. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev. Mol. Diagn. 2023;23:1135–1152. doi: 10.1080/14737159.2023.2267977. - DOI - PMC - PubMed
    1. Brown G.D., Denning D.W., Gow N.A.R., Levitz S.M., Netea M.G., White T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404. - DOI - PubMed
    1. Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi. 2017;3:57. doi: 10.3390/jof3040057. - DOI - PMC - PubMed
    1. Kainz K., Bauer M.A., Madeo F., Carmona-Gutierrez D. Fungal infections in humans: The silent crisis. Microb. Cell. 2020;7:143–145. doi: 10.15698/mic2020.06.718. - DOI - PMC - PubMed
    1. Gnat S., Łagowski D., Nowakiewicz A., Dyląg M. A global view on fungal infections in humans and animals: Infections caused by dimorphic fungi and dermatophytoses. J. Appl. Microbiol. 2021;131:2688–2704. doi: 10.1111/jam.15084. - DOI - PubMed