Easy but Efficient: Facile Approach to Molecule with Theoretically Justified Donor-Acceptor Structure for Effective Photothermal Conversion and Intravenous Photothermal Therapy
- PMID: 38477060
- PMCID: PMC11200029
- DOI: 10.1002/advs.202309068
Easy but Efficient: Facile Approach to Molecule with Theoretically Justified Donor-Acceptor Structure for Effective Photothermal Conversion and Intravenous Photothermal Therapy
Abstract
To accelerate the pace in the field of photothermal therapy (PTT), it is urged to develop easily accessible photothermal agents (PTAs) showing high photothermal conversion efficiency (PCE). As a proof-of-concept, hereby a conventional strategy is presented to prepare donor-acceptor (D-A) structured PTAs through cycloaddition-retroelectrocyclization (CA-RE) reaction, and the resultant PTAs give high PCE upon near-infrared (NIR) irradiation. By joint experimental-theoretical study, these PTAs exhibit prominent D-A structure with strong intramolecular charge transfer (ICT) characteristics and significantly twisting between D and A units which account for the high PCEs. Among them, the DMA-TCNQ exhibits the strongest absorption in NIR range as well as the highest PCE of 91.3% upon irradiation by 760-nm LED lamp (1.2 W cm-2). In vitro and in vivo experimental results revealed that DMA-TCNQ exhibits low dark toxicity and high phototoxicity after IR irradiation along with nude mice tumor inhibition up to 81.0% through intravenous therapy. The findings demonstrate CA-RE reaction as a convenient approach to obtain twisted D-A structured PTAs for effective PTT and probably promote the progress of cancer therapies.
Keywords: CA–RE reaction; D–A junction; antitumor; photothermal therapy; twisted molecules.
© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Near-Infrared Light-Driving Organic Photothermal Agents with an 88.9% Photothermal Conversion Efficiency for Image-Guided Synergistic Phototherapy.Adv Healthc Mater. 2024 Jul;13(19):e2400201. doi: 10.1002/adhm.202400201. Epub 2024 Mar 31. Adv Healthc Mater. 2024. PMID: 38519419
-
Enhanced Photothermal Therapy under Low-Power Near-Infrared Irradiation Enabled by a Si-Cyclopentadithiophene-Based Organic Molecule.Adv Healthc Mater. 2025 Jan;14(2):e2403248. doi: 10.1002/adhm.202403248. Epub 2024 Nov 18. Adv Healthc Mater. 2025. PMID: 39555634
-
Acceptor-donor-acceptor type organic photothermal agents with enhanced NIR absorption and photothermal conversion effect for cancer photothermal therapy.Talanta. 2024 Jul 1;274:125991. doi: 10.1016/j.talanta.2024.125991. Epub 2024 Mar 27. Talanta. 2024. PMID: 38547836
-
Recent Development of Photothermal Agents (PTAs) Based on Small Organic Molecular Dyes.Chembiochem. 2020 Aug 3;21(15):2098-2110. doi: 10.1002/cbic.202000089. Epub 2020 Apr 27. Chembiochem. 2020. PMID: 32202062 Review.
-
Antitumor Applications of Photothermal Agents and Photothermal Synergistic Therapies.Int J Mol Sci. 2022 Jul 18;23(14):7909. doi: 10.3390/ijms23147909. Int J Mol Sci. 2022. PMID: 35887255 Free PMC article. Review.
Cited by
-
Alkyl side-chain engineering enables significant suppression of conformational relaxation for improved near infrared-II imaging-guided uterine recanalization surgery and cancer phototheranostics.Mater Today Bio. 2025 May 17;32:101876. doi: 10.1016/j.mtbio.2025.101876. eCollection 2025 Jun. Mater Today Bio. 2025. PMID: 40492154 Free PMC article.
-
Carbamate-Functionalized NLOphores via a Formal [2+2] Cycloaddition-Retroelectrocyclization Strategy.Chemistry. 2025 Mar 3;31(13):e202404778. doi: 10.1002/chem.202404778. Epub 2025 Jan 31. Chemistry. 2025. PMID: 39844739 Free PMC article.
References
-
- Zhao F., Huang W., He L., Nie S., Sun Z., Chen T., Yin H., Zhao J., Nano Today 2023, 50, 101819.
-
- a) Galluzzi L., Bravo‐San Pedro J. M., Demaria S., Formenti S. C., Kroemer G., Nat. Rev. Clin. Oncol. 2017, 14, 247; - PubMed
- b) Yao H., Wang Z., Wang N., Deng Z., Liu G., Zhou J., Chen S., Shi J., Zhu G., Angew. Chem., Int. Ed. 2022, 61, e202203838; - PubMed
- c) Cheng Z., Li M., Dey R., Chen Y., J. Hematol. Oncol. 2021, 14, 85; - PMC - PubMed
- d) Ma L., Li L., Zhu G., Inorg. Chem. Front. 2022, 9, 2424.
-
- a) Deng Z., Li H., Chen S., Wang N., Liu G., Liu D., Ou W., Xu F., Wang X., Lei D., Lo P.‐C., Li Y. Y., Lu J., Yang M., He M.‐L., Zhu G., Nat. Chem. 2023, 15, 930; - PubMed
- b) Deng Z., Wang N., Liu Y., Xu Z., Wang Z., Lau T.‐C., Zhu G., J. Am. Chem. Soc. 2020, 142, 7803; - PubMed
- c) Overchuk M., Weersink R. A., Wilson B. C., Zheng G., ACS Nano 2023, 17, 7979. - PMC - PubMed
-
- a) Kuang S., Wei F., Karges J., Ke L., Xiong K., Liao X., Gasser G., Ji L., Chao H., J. Am. Chem. Soc. 2022, 144, 4091; - PubMed
- b) Zhu S., Yao S., Wu F., Jiang L., Wong K.‐L., Zhou J., Wang K., Org. Biomol. Chem. 2017, 15, 5764; - PubMed
- c) Zhou Y., Chan C.‐F., Kwong D. W. J., Law G.‐L., Cobb S., Wong W.‐K., Wong K.‐L., Chem. Commun. 2017, 53, 557. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous