Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar;89(5):1107-1123.
doi: 10.2166/wst.2024.054.

Hydrothermal-assisted synthesis of Sr-doped SnS nanoflower catalysts for photodegradation of metronidazole antibiotic pollutant in wastewater promoted by natural sunlight irradiation

Affiliations

Hydrothermal-assisted synthesis of Sr-doped SnS nanoflower catalysts for photodegradation of metronidazole antibiotic pollutant in wastewater promoted by natural sunlight irradiation

Tayeb Bouarroudj et al. Water Sci Technol. 2024 Mar.

Abstract

In this study, we report a facile hydrothermal synthesis of strontium-doped SnS nanoflowers that were used as a catalyst for the degradation of antibiotic molecules in water. The prepared sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet-visible absorption spectroscopy (UV-Vis). The photocatalytic ability of the strontium-doped SnS nanoflowers was evaluated by studying the degradation of metronidazole in an aqueous solution under photocatalytic conditions. The degradation study was conducted for a reaction period of 300 min at neutral pH, and it was found that the degradation of metronidazole reached 91%, indicating the excellent photocatalytic performance of the catalyst. The influence of experimental parameters such as catalyst dosage, initial metronidazole concentration, initial reaction pH, and light source nature was optimized with respect to metronidazole degradation over time. The reusability of the strontium-doped SnS nanoflowers catalyst was investigated, and its photocatalytic efficiency remained unchanged even after four cycles of use.

PubMed Disclaimer

LinkOut - more resources