Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment
- PMID: 38486107
- PMCID: PMC11090753
- DOI: 10.1038/s41559-024-02367-y
Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth's ecosystems. Yet little is known about how early steps in the evolution of multicellularity affect eco-evolutionary dynamics. Through long-term experimental evolution, we observed niche partitioning and the adaptive divergence of two specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subjected to selection for rapid growth, followed by selection favouring larger group size. Small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations, specializing on divergent aspects of a trade-off between growth rate and survival. Through modelling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically impactful emergent properties of this evolutionary transition.
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Conflict of interest statement
Competing interests
The authors declare no competing interests.
Figures










Update of
-
Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment.bioRxiv [Preprint]. 2023 Jan 20:2023.01.19.524803. doi: 10.1101/2023.01.19.524803. bioRxiv. 2023. Update in: Nat Ecol Evol. 2024 May;8(5):1010-1020. doi: 10.1038/s41559-024-02367-y. PMID: 36711513 Free PMC article. Updated. Preprint.
Similar articles
-
Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment.bioRxiv [Preprint]. 2023 Jan 20:2023.01.19.524803. doi: 10.1101/2023.01.19.524803. bioRxiv. 2023. Update in: Nat Ecol Evol. 2024 May;8(5):1010-1020. doi: 10.1038/s41559-024-02367-y. PMID: 36711513 Free PMC article. Updated. Preprint.
-
Evolutionary consequences of nascent multicellular life cycles.Elife. 2023 Oct 27;12:e84336. doi: 10.7554/eLife.84336. Elife. 2023. PMID: 37889142 Free PMC article.
-
De novo evolution of macroscopic multicellularity.Nature. 2023 May;617(7962):747-754. doi: 10.1038/s41586-023-06052-1. Epub 2023 May 10. Nature. 2023. PMID: 37165189 Free PMC article.
-
The many roads to and from multicellularity.J Exp Bot. 2020 Jun 11;71(11):3247-3253. doi: 10.1093/jxb/erz547. J Exp Bot. 2020. PMID: 31819969 Free PMC article. Review.
-
The Origins of Aging: Evidence that Aging is an Adaptive Phenotype.Curr Aging Sci. 2016;9(2):95-115. doi: 10.2174/1874609809666160211124947. Curr Aging Sci. 2016. PMID: 26864038 Review.
Cited by
-
Examining the role of oxygen-binding proteins on the early evolution of multicellularity.bioRxiv [Preprint]. 2023 Dec 4:2023.12.01.569647. doi: 10.1101/2023.12.01.569647. bioRxiv. 2023. PMID: 38106219 Free PMC article. Preprint.
-
Metabolically-driven flows enable exponential growth in macroscopic multicellular yeast.bioRxiv [Preprint]. 2024 Jun 22:2024.06.19.599734. doi: 10.1101/2024.06.19.599734. bioRxiv. 2024. Update in: Sci Adv. 2025 Jun 20;11(25):eadr6399. doi: 10.1126/sciadv.adr6399. PMID: 38948761 Free PMC article. Updated. Preprint.
-
Oxygen-binding proteins aid oxygen diffusion to enhance fitness of a yeast model of multicellularity.PLoS Biol. 2025 Jan 30;23(1):e3002975. doi: 10.1371/journal.pbio.3002975. eCollection 2025 Jan. PLoS Biol. 2025. PMID: 39883703 Free PMC article.
-
Adaptive evolutionary trajectories in complexity: Transitions between unicellularity and facultative differentiated multicellularity.Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2411692122. doi: 10.1073/pnas.2411692122. Epub 2025 Jan 22. Proc Natl Acad Sci U S A. 2025. PMID: 39841150 Free PMC article.
-
Metabolically driven flows enable exponential growth in macroscopic multicellular yeast.Sci Adv. 2025 Jun 20;11(25):eadr6399. doi: 10.1126/sciadv.adr6399. Epub 2025 Jun 20. Sci Adv. 2025. PMID: 40540574 Free PMC article.
References
-
- Maloof AC et al. The earliest Cambrian record of animals and ocean geochemical change. GSA Bull. 122, 1731–1774 (2010).
-
- McMahon S & Parnell J The deep history of Earth’s biomass. J. Geol. Soc. 175, 716–720 (2018).
-
- Delwiche CF & Cooper ED The evolutionary origin of a terrestrial flora. Curr. Biol. 25, R899–R910 (2015). - PubMed
-
- Odling-Smee FJ, Laland KN & Feldman MW Niche construction. Am. Nat. 147, 641–648 (1996).
-
- Boyce CK The evolutionary history of roots and leaves. in Vascular Transport in Plants (eds Holbrook NM & Zwieniecki MA) 479–499 (Elsevier, 2005).
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources