Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness
- PMID: 38490212
- PMCID: PMC11003465
- DOI: 10.1016/j.ccell.2024.02.016
Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness
Abstract
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity.
Keywords: CRISPR-Cas9 screen; Ctbp1; Dap5; Icam1; T cells; activation-induced cell death; cancer immunotherapy; dysfunction; effector function; exhaustion.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests C.L., P.L., A.A., G.A., M.A.L., D.W.V., and D.S.P. are named as inventors on a patent filed by the Netherlands Cancer Institute and Oncode on the findings described in this manuscript. D.S.P. and M.A.L. are co-founders, shareholders, and advisors of Immagene.
Figures







Similar articles
-
Genome-wide fitness gene identification reveals Roquin as a potent suppressor of CD8 T cell expansion and anti-tumor immunity.Cell Rep. 2021 Dec 7;37(10):110083. doi: 10.1016/j.celrep.2021.110083. Cell Rep. 2021. PMID: 34879274
-
Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells.Cell. 2019 Aug 22;178(5):1189-1204.e23. doi: 10.1016/j.cell.2019.07.044. Cell. 2019. PMID: 31442407 Free PMC article.
-
Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence.Cancer Cell. 2022 Jul 11;40(7):768-786.e7. doi: 10.1016/j.ccell.2022.06.001. Epub 2022 Jun 23. Cancer Cell. 2022. PMID: 35750052 Free PMC article.
-
CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence.Int J Mol Sci. 2023 Aug 1;24(15):12317. doi: 10.3390/ijms241512317. Int J Mol Sci. 2023. PMID: 37569693 Free PMC article. Review.
-
Applications and advances of CRISPR-Cas9 in cancer immunotherapy.J Med Genet. 2019 Jan;56(1):4-9. doi: 10.1136/jmedgenet-2018-105422. Epub 2018 Jul 3. J Med Genet. 2019. PMID: 29970486 Review.
Cited by
-
Pyruvate kinase M2 activation reprograms mitochondria in CD8 T cells, enhancing effector functions and efficacy of anti-PD1 therapy.Cell Metab. 2025 Jun 3;37(6):1294-1310.e7. doi: 10.1016/j.cmet.2025.03.003. Epub 2025 Apr 7. Cell Metab. 2025. PMID: 40199327
-
CRISPRi Screening Identifies SON and MAP4K1 as Regulators of Type III Cytokine Expression in Innate Lymphoid Cells.bioRxiv [Preprint]. 2025 Aug 15:2025.08.15.670561. doi: 10.1101/2025.08.15.670561. bioRxiv. 2025. PMID: 40832267 Free PMC article. Preprint.
-
Enhanced anti-tumor activity by zinc finger repressor-driven epigenetic silencing of immune checkpoints and TGFBR2 in CAR-T cells and TILs.Mol Ther Oncol. 2025 May 7;33(2):200989. doi: 10.1016/j.omton.2025.200989. eCollection 2025 Jun 18. Mol Ther Oncol. 2025. PMID: 40487483 Free PMC article.
References
-
- Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., Chow L.Q., Vokes E.E., Felip E., Holgado E., et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015;373:1627–1639. doi: 10.1056/NEJMOA1507643/SUPPL_FILE/NEJMOA1507643_APPENDIX.PDF. - DOI - PMC - PubMed
-
- Van Den Berg J.H., Heemskerk B., Van Rooij N., Gomez-Eerland R., Michels S., Van Zon M., De Boer R., Bakker N.A.M., Jorritsma-Smit A., Van Buuren M.M., et al. Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up. J. Immunother. Cancer. 2020;8:e000848. doi: 10.1136/JITC-2020-000848. - DOI - PMC - PubMed
-
- Maude S.L., Frey N., Shaw P.A., Aplenc R., Barrett D.M., Bunin N.J., Chew A., Gonzalez V.E., Zheng Z., Lacey S.F., et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 2014;371:1507–1517. doi: 10.1056/NEJMOA1407222/SUPPL_FILE/NEJMOA1407222_DISCLOSURES.PDF. - DOI - PMC - PubMed
-
- Dudley M.E., Wunderlich J.R., Robbins P.F., Yang J.C., Hwu P., Schwartzentruber D.J., Topalian S.L., Sherry R., Restifo N.P., Hubicki A.M., et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. 2002;298:850–854. doi: 10.1126/SCIENCE.1076514/SUPPL_FILE/DUDLEY.SOM.PDF. - DOI - PMC - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous