Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 27;146(12):8298-8307.
doi: 10.1021/jacs.3c13422. Epub 2024 Mar 18.

Field-Induced Antiferroelectric-Ferroelectric Transformation in Organometallic Perovskite Displaying Giant Negative Electrocaloric Effect

Affiliations

Field-Induced Antiferroelectric-Ferroelectric Transformation in Organometallic Perovskite Displaying Giant Negative Electrocaloric Effect

Shiguo Han et al. J Am Chem Soc. .

Abstract

Antiferroelectric materials with an electrocaloric effect (ECE) have been developed as promising candidates for solid-state refrigeration. Despite the great advances in positive ECE, reports on negative ECE remain quite scarce because of its elusive physical mechanism. Here, a giant negative ECE (maximum ΔS ∼ -33.3 J kg-1 K-1 with ΔT ∼ -11.7 K) is demonstrated near room temperature in organometallic perovskite, iBA2EA2Pb3I10 (1, where iBA = isobutylammonium and EA = ethylammonium), which is comparable to the greatest ECE effects reported so far. Moreover, the ECE efficiency ΔSE (∼1.85 J cm kg-1 K-1 kV-1) and ΔTE (∼0.65 K cm kV-1) are almost 2 orders of magnitude higher than those of classical inorganic ceramic ferroelectrics and organic polymers, such as BaTiO3, SrBi2Ta2O9, Hf1/2Zr1/2O2, and P(VDF-TrFE). As far as we know, this is the first report on negative ECE in organometallic hybrid perovskite ferroelectric. Our experimental measurement combined with the first-principles calculations reveals that electric field-induced antipolar to polar structural transformation results in a large change in dipolar ordering (from 6.5 to 45 μC/cm2 under the ΔE of 18 kV/cm) that is closely related to the entropy change, which plays a key role in generating such giant negative ECE. This discovery of field-induced negative ECE is unprecedented in organometallic perovskite, which sheds light on the exploration of next-generation refrigeration devices with high cooling efficiency.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources