Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 20;44(2):344-353.
doi: 10.12122/j.issn.1673-4254.2024.02.17.

[A digital droplet PCR detection technique based on filter faster R-CNN]

[Article in Chinese]
Affiliations

[A digital droplet PCR detection technique based on filter faster R-CNN]

[Article in Chinese]
Y Zhang et al. Nan Fang Yi Ke Da Xue Xue Bao. .

Abstract

Objective: To propose a method for mitigate the impact of anomaly points (such as dust, bubbles, scratches on the chip surface, and minor indentations) in images on the results of digital droplet PCR (ddPCR) detection to achieve high-throughput, stable, and accurate detection.

Methods: We propose a Filter Faster R-CNN ddPCR detection model, which employs Faster R-CNN to generate droplet prediction boxes followed by removing the anomalies within the positive droplet prediction boxes using an outlier filtering module (Filter). Using a plasmid carrying a norovirus fragment as the template, we established a ddPCR dataset for model training (2462 instances, 78.56%) and testing (672 instances, 21.44%). Ablation experiments were performed to test the effectiveness of 3 filtering branches of the Filter for anomaly removal on the validation dataset. Comparative experiments with other ddPCR droplet detection models and absolute quantification experiments of ddPCR were conducted to assess the performance of the Filter Faster R-CNN model.

Results: In low-dust and dusty environments, the Filter Faster R-CNN model achieved detection accuracies of 98.23% and 88.35% for positive droplets, respectively, with composite F1 scores reaching 99.15% and 99.14%, obviously superior to the other models. The introduction of the filtering module significantly enhanced the positive accuracy of the model in dusty environments. In the absolute quantification experiments, a regression line was plotted using the results from commercial flow cytometry equipment as the standard concentration. The results show a regression line slope of 1.0005, an intercept of -0.025, and a determination coefficient of 0.9997, indicating high consistency between the two results.

Conclusion: The ddPCR detection technique using the Filter Faster R-CNN model provides a robust detection method for ddPCR under various environmental conditions.

目的: 研究液滴数字聚合酶链式反应(ddPCR)液滴检测技术,去除图像中灰尘、气泡、芯片表面的划痕以及微小凹陷等因素产生的异常点对结果的影响,实现高通量、稳定和准确的ddPCR液滴的自动检测。

方法: 提出Filter Faster R-CNN ddPCR液滴检测模型。使用Faster R-CNN生成液滴预测框,之后使用异常点过滤模块(Filter)去除阳性液滴预测框中的异常点。以诺如病毒片段的质粒为模板进行ddPCR实验,建立一个ddPCR数据集,用于模型的训练(2462例,约占78.56%)和测试(672例,约占21.44%)。对异常点过滤模块的3个过滤支路在验证集上进行消融实验,通过与其他ddPCR液滴检测模型进行比较的对比实验以及进行ddPCR的绝对定量实验。

结果: 在少尘和多尘的环境中,Filter Faster R-CNN阳性液滴准确率为98.23%和88.35%,综合指标F1分数分别达到了99.15%和99.14%,高于其他相比较的模型。独立样本T检验的结果证明,相比未添加过滤模块的网络,添加过滤模块后能够显著提示模型在多尘环境中的阳性准确率。在ddPCR绝对定量实验中,将商业化流式检测设备的结果作为标准浓度,绘制了回归线。结果显示,回归线斜率为1.0005,截距为-0.025,决定系数达到了0.9997,二者结果高度一致。

结论: 本文提出了一种基于Filter Faster R-CNN的ddPCR液滴检测技术,为在多种环境条件下的ddPCR实验提供了鲁棒的液滴检测方法。

Keywords: Filter Faster R-CNN; anomaly points removal; digital droplet ddPCR.

PubMed Disclaimer

Figures

图 1
图 1
ddPCR图像预处理 ddPCR image preprocessing (Scale bar=300 μm). A: Original ddPCR image. B: Local portion of the ddPCR image. C: Pre-annotation using Hough Circle Transform, with yellow arrows indicating missed and mislabeled areas. D: Manual label correction and addition of anomaly point labels. E: Image with Gaussian blur.
图 2
图 2
Filter Faster R-CNN模型框架,其中橙色虚线为Faster R-CNN部分,蓝色虚线为异常点过滤模块 Filter Faster R-CNN model framework, in which the orange dotted line is the Faster R-CNN and the blue dotted line is the Filter module.
图 3
图 3
常见异常斑点 Representative anomalous spots (Scale bar=300 μm). A: Fuzziness or scratches. B: Bubbles within droplets. C: Dust particles between droplets. D: Dust outside the grooves.
图 4
图 4
Loss函数收敛性能分析 Convergence performance analysis of Loss function.
图 5
图 5
少尘环境中ddPCR图像测试结果 Test results of ddPCR images in a low-dust environment, where red boxes represent positive droplets, blue boxes represent negative droplets, and yellow boxes represent anomaly points (A and B are both representative cases).
图 6
图 6
多尘环境中ddPCR图像测试结果 Test results of ddPCR images in a dusty environment, where red boxes represent positive droplets, blue boxes represent negative droplets, and yellow boxes represent anomaly points. A and B are both representative cases.
图 7
图 7
SSD与Faster R-CNN添加Filter模块前后预测结果比较 Comparison of prediction results before and after adding the Filter module for SSD and Faster R-CNN.

Similar articles

References

    1. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA. 1999;96(16):9236–41. doi: 10.1073/pnas.96.16.9236. - DOI - PMC - PubMed
    1. Hindson CM, Chevillet JR, Briggs HA, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10(10):1003–5. doi: 10.1038/nmeth.2633. - DOI - PMC - PubMed
    1. Xu JC, Wu W, Wu CY, et al. A large-scale, multicentered trial evaluating the sensitivity and specificity of digital PCR versus ARMS-PCR for detecting ctDNA-based EGFR p.T790M in non-small-cell lung cancer patients. Transl Lung Cancer Res. 2021;10(10):3888–901. doi: 10.21037/tlcr-21-564. - DOI - PMC - PubMed
    1. Zednikova I, Pazourkova E, Lassakova S, et al. Detection of cell-free foetal DNA fraction in female-foetus bearing pregnancies using X-chromosomal insertion/deletion polymorphisms examined by digital droplet PCR. Sci Rep. 2020;10(1):20036. doi: 10.1038/s41598-020-77084-0. - DOI - PMC - PubMed
    1. Dong LH, Zhou JB, Niu CY, et al. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta. 2021;224:121726. doi: 10.1016/j.talanta.2020.121726. - DOI - PMC - PubMed

Publication types

LinkOut - more resources