Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar:166:112051.
doi: 10.1016/j.jbiomech.2024.112051. Epub 2024 Mar 15.

Markerless motion capture provides accurate predictions of ground reaction forces across a range of movement tasks

Affiliations
Free article

Markerless motion capture provides accurate predictions of ground reaction forces across a range of movement tasks

Glen A Lichtwark et al. J Biomech. 2024 Mar.
Free article

Abstract

Measuring or estimating the forces acting on the human body during movement is critical for determining the biomechanical aspects relating to injury, disease and healthy ageing. In this study we examined whether quantifying whole-body motion (segmental accelerations) using a commercial markerless motion capture system could accurately predict three-dimensional ground reaction force during a diverse range of human movements: walking, running, jumping and cutting. We synchronously recorded 3D ground reaction forces (force instrumented treadmill or in-ground plates) with high-resolution video from eight cameras that were spatially calibrated relative to a common coordinate system. We used a commercially available software to reconstruct whole body motion, along with a geometric skeletal model to calculate the acceleration of each segment and hence the whole-body centre of mass and ground reaction force across each movement task. The average root mean square difference (RMSD) across all three dimensions and all tasks was 0.75 N/kg, with the maximum average RMSD being 1.85 N/kg for running vertical force (7.89 % of maximum). There was very strong agreement between peak forces across tasks, with R2 values indicating that the markerless prediction algorithm was able to predict approximately 95-99 % of the variance in peak force across all axes and movements. The results were comparable to previous reports using whole-body marker-based approaches and hence this provides strong proof-of-principle evidence that markerless motion capture can be used to predict ground reaction forces and therefore potentially assess movement kinetics with limited requirements for participant preparation.

Keywords: Biomechanics; Cutting; Human motion tracking; Jumping; Running; Walking.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources