Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Sep 4;18(18):4017-24.
doi: 10.1021/bi00585a027.

Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance

Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance

R E Hurd et al. Biochemistry. .

Abstract

Analysis of the low-field nuclear magnetic resonance (NMR) spectra of several class 1 D4V5 transfer ribonucleic acid (tRNA) species containing 7-methylguanosine in their variable loops reveals a set of six to seven tertiary base pair resonances, one of which is always located at ca. --13.4 ppm. Other tRNA species which do not contain 7-methyl-guanosine do not contain the tertiary resonance at --13.4 ppm. Chemical removal of 7-methylguanosine from several tRNAs containing the same dihydrouridine (DHU) helix sequence as yeast tRNAPhe results in the loss of the --13.4-ppm tertiary resonance. In the initiator methionine tRNA, which contains a different DHU helix sequence, the 7-methylguanosine hydrogen bond has been assigned at --14.55 ppm by chemical removal of this residue. In these experiments the aromatic C8H proton of 7-methylguanosine was also assigned (--9.1 ppm). The unexpectedly low-field position of the 7-methylguanosine resonance is explained by the deshielding effect of the delocalized positive charge in this nucleoside.

PubMed Disclaimer

Publication types